DEAL de Martinique

DEAL MARTINIQUE

Pointe de Jaham BP 7212 97274 Schoelcher Cedex

97200 Fort-de-France

Cours d'eau de Martinique

Suivi des stations du réseau de surveillance des masses d'eau superficielles terrestres de Martinique au titre de l'année 2010 Volet Biologique

Rapport Final

ASCONIT CONSULTANTS Agence Caraïbes

ZI Champigny 97224 DUCOS Tél. 05.96.63 55 78 Mobile: 06.96.25.54.10

caraibes@asconit.com

Mars 2011 Version 4

Principaux Contacts:

DEAL de la Martinique : SEMA

■ Bruno CAPDEVILLE Tél.: 05.96.71.30.05
■ Corinne FIGUERAS Tél.: 05.96.71.30.05

ASCONIT CONSULTANTS:

Nicolas BARGIER nicolas.bargier@asconit.com
 Charlotte VERGES charlotte.verges@asconit.com

Sommaire

1.	INT	RODUCTION	6
2.	SITE	S, MATERIELS ET METHODES	7
2.1	Ppe	SENTATION DES SITES	7
2.2	. TAL	ACTERISATION DES CONDITIONS PHYSICO-CHIMIQUES	9
2.3		LLYSE FLORISTIQUE DES DIATOMEES	
	. ANA 2.3.1.	Protocole de terrain	
	2.3.2.	Analyse en laboratoire	
	2.3.3.	Déroulement des prélèvements	
2.4		DE DE LA MACROFAUNE BENTHIQUE	
	2.4.1.	Principe de la méthode	
2	2.4.2.	Stratégie d'échantillonnage	
2	2.4.3.	Planning des opérations de terrain	14
2.5	. Ети	DE DE L'ICHTYOFAUNE ET DES MACROCRUSTACES	15
2	2.5.1.	Principe de la méthode	15
	2.5.2.	Stratégie d'échantillonnage	15
_	2.5.3.	Interprétation des résultats	
2	2.5.4.	Eléments physico-chimiques dans le biote	18
3.	RES	JLTATS	19
3.1	Cor	NDITIONS PHYSICO-CHIMIQUES IN SITU	10
3.2		ILYSE FLORISTIQUE DES DIATOMEES	
	. ANA 3.2.1.	Diversité et richesse taxonomique	
	3.2.2.	Indices diatomiques (IPS-IBD)	20 22
_	3.2.3.	Bilan comparatif 2005-2010	
_	3.2.4.	Conclusion	
3.3		DE DE LA MACROFAUNE BENTHIQUE	
	 3.3.1.	Caractérisation hydromorphologique des stations	
_	3.3.2.	Abondance et richesse taxonomique	
	3.3.3.	Structure du peuplement	
3	3.3.4.	Indices de diversité	
3	3.3.5.	Synthèse Invertébrés benthiques	33
3.4	. Eтu	DE DE L'ICHTYOFAUNE ET DES MACROCRUSTACES	
3	3.4.1.	L'habitat	34
	3.4.2.	Richesse et composition spécifique	
	3.4.3.	Densité	
_	3.4.4.	Dominance crustacés/poissons	
	3.4.5.	Richesse et composition spécifique	
	3.4.6.	Potentiel reproducteur	
	3.4.7. 3.4.8.	Répartition en classes de tailles	50
	3.4.8. 3.4.9.	Synthèse poissons et macrocrustacés	
4.		IN DU CONTROLE DE SURVEILLANCE ET D'ENQUETE	
5.	EVAI	LUATION DE LA QUALITE DES STATIONS SELON LA REFERENCE	65
6.		EXES	72

Liste des tableaux

Tableau 1. Présentation des stations de contrôle de surveillance, opérationnel et d'enquête 2010 pour la Martinique8
Tableau 2 : Date des prélèvements de diatomées – campagne 2010 – Stations de Surveillance
Tableau 3. Dates d'intervention, conditions météorologiques et hydrologie sur les stations de contrôle de surveillance et d'enquête Martinique au carême 201014
Tableau 4. Paramètres physico-chimiques <i>in situ</i> de l'eau des stations de contrôle de surveillance et d'enquête 2010 de Martinique, en période de carême
Tableau 5 : Richesse spécifique et indice de diversité des peuplements – campagne 2010 – Stations de surveillance
Tableau 6 : Indices diatomiques (IPS et IBD) et classes de qualité – campagne 2010 – Stations de surveillance 23
Tableau 7 : Evolution des valeurs indicielles de 2007 à 2010 – Stations de surveillance
Tableau 8. Prélèvements des macroinvertébrés benthiques (couple substrat/vitesse) sur les stations du réseau RCS 2010 de Martinique
Tableau 9. Abondances en macroinvertébrés benthiques des stations des réseaux de contrôle suivies depuis 2007 en période de carême
Tableau 10. Richesse taxonomique au carême 2010 pour les stations du réseau de contrôle et de surveillance.
Tableau 11. Taxon dominant sur chaque station du réseau de contrôle et surveillance au carême 2010 31
Tableau 12. Valeurs des différents indices structuraux calculés pour les sites du réseau de contrôle et surveillance de la Martinique sur la base des données de carême 2010
Tableau 13. Composition en espèces de poissons et macrocrustacés des stations de surveillance – Année 2010
Tableau 14. Composition en espèces de poissons et macrocrustacés des stations d'enquête – Année 2010 42
Tableau 15. Données de pêche au filet pour les poissons à Aval bourg Rivière Pilote54
Tableau 16. Résultats des analyses physico-chimiques réalisées sur le biote dans les stations des réseaux de surveillance, opérationnel et d'enquête, année 2010
Tableau 17. Masses d'eau et leurs objectifs selon le SDAGE révisé 2009
Tableau 18. Correspondance entre les stations du réseau de contrôle de surveillance, opérationnel et d'enquête et les groupements définis dans l'étude de référence
Tableau 19. Limites de classes de qualité de la référence 2010
Tableau 20. Bilan du suivi biologique du Réseau de Contrôle de Surveillance, opérationnel et d'enquête de Martinique – Année 2010

Liste des figures

Figure 1. Carte de localisation générale des stations du réseau de surveillance et d'enquête
Figure 2 : Richesse et diversité spécifique des peuplements - campagne 2010 – Stations de surveillance 22
Figure 3. Répartition de l'abondance entre les grands groupes taxonomiques pour chaque site du réseau de contrôle et de surveillance au carême 2010
Figure 4. Valeurs des différents indices structuraux calculés sur les sites du réseau de contrôle et suveillance entre 2007 et 2010 (moyenne ± Min et Max)
Figure 5. Répartition des faciès échantillonnés sur les stations de surveillance- Année 201035
Figure 6. Evolution des faciès échantillonnés en 2007, 2008 et 2010 sur les stations de surveillance. (Les stations Pont RD10 Céron, Stade Grande rivière et Amont Confluence Pirogue n'ont pas été échantillonnées en 2008)
Figure 7. Répartition des faciès échantillonnés sur les stations d'enquêtes en 2009 et 2010 37
Figure 8. Richesse en espèces des stations de surveillance en 2010 (losanges) et Richesses moyennes en 2007-2008 (Traits). Pour les stations Pont RD10 Céron, Stade Grande rivière et Amont Confluence Pirogue les traits représentent les richesses de 2008 ; l'échantillonnage n'ayant pas eu lieu en 2007
Figure 9. Richesse en espèces des stations d'enquêtes en 2009 et 2010
Figure 10. Densité en poissons, en crustacés et densité totale aux différents sites de surveillance en 2010 43
Figure 11. Evolution des densités totales aux différentes stations de surveillance - 2007, 2008 et 2010 44
Figure 12. Abondances relatives en poissons et crustacés aux stations d'enquêtes en 2009 et 2010 45
Figure 13. Abondances relatives en poissons et crustacés – Année 201045
Figure 14. Abondances relatives entre poissons et crustacés pour les sites de surveillance – Années 2007- 2010
Figure 15. Abondances relatives en poissons et crustacés aux stations d'enquêtes en 2009 et 2010 47
Figure 16. Répartition en abondance relative des familles de crustacés et poissons aux stations d'enquête en 2009 et 2010
Figure 17. Répartition en abondance relative des familles de crustacés et poissons aux stations de surveillance - Années 2010
Figure 18. Potentiel reproducteur des crustacés aux stations de surveillance - Année 201049
Figure 19. Potentiel reproducteur des crustacés aux stations d'enquêtes 2009 et 2010 50
Figure 20. Répartition en classes de tailles (mm) de Sicydium sp aux stations de surveillance - Année 2010. 51
Figure 21. Répartition en classes de tailles (mm) de <i>M. faustinium</i> aux stations de surveillance -Année 201052
Figure 22. Répartition en classes de tailles (mm) de <i>M. faustinum</i> et <i>Sicydium sp</i> , les deux espèces les mieux représentées sur les stations d'enquêtes –Année 2010
Figure 23. Photo des espèces pêchées au filet à la station Aval bourg Rivière Pilote. a : Engrolidae ; c : Bairdiella ronchus ; d : Diapterus auratus ; e : Centropomus ensiferus55
Figure 24 Cartes Réseau de contrôle de surveillance, opérationnel et d'enquête 2009 et objectifs de qualité écologique selon le SDAGE

1. Introduction

Le programme de suivi des cours d'eau de la Martinique a été défini pour l'année 2010. Il doit répondre à 4 objectifs principaux :

- la poursuite du contrôle de surveillance des masses d'eau de surface continentales prévu par la Directive Cadre sur l'Eau (circulaire DCE 2006/16 du 13 juillet 2006),
- la mise en œuvre des contrôles opérationnels (circulaires DCE2006/16 du 13 juillet 2006 et DCE 2007/24 du 31 juillet 2007) à partir de cette année, sur les masses d'eau en RNABE à l'horizon 2015,
- la mise en place de contrôles d'enquête sur de nouveaux points de suivi de pollutions potentielles,
- la poursuite de l'acquisition de données pour la définition du « bon état écologique » de référence pour les masses d'eau de la Martinique.

A cette fin, quatre réseaux ont été définis :

- le réseau de contrôle de surveillance (16 stations),
- le réseau de contrôle opérationnel (10 stations correspondantes aux stations de surveillance en RNABE en 2008),
- le réseau de contrôle d'enquête (4 stations),
- le réseau de sites de référence, (9 stations),

Ces réseaux font l'objet d'un suivi pour l'année 2010 pour lequel des analyses physicochimiques des eaux superficielles, ainsi que des analyses hydrobiologiques sont menées sur les stations définies par la DIREN de la Martinique.

Le présent document constitue le compte rendu final relatif aux stations des réseaux de contrôle de surveillance, de contrôle opérationnel et d'enquête pour ce qui concerne le suivi 2010 des peuplements biologiques.

RAPPORT FINAL Page 6/135

2. Sites, matériels et méthodes

Dans le cadre des contrôles de surveillance, opérationnel et d'enquête, **20 stations** sont échantillonnées. Les suivis des peuplements biologiques menés dans le cadre de ces programmes (diatomées, macrofaune benthique et ichtyofaune) ont été réalisés une fois annuellement en carême. Les éléments hydro-morphologiques ont fait l'objet d'une vérification des observations faites au cours des précédentes années. Conformément aux exigences de la DCE (arrêté du 25/01/2010), des analyses sur biote sont également réalisées dans le but de suivre l'état de contamination des Sicydium par les molécules identifiées dans l'arrêté du 25/01/2010.

2.1. Présentation des sites

Ce réseau est composé de 20 stations de trois types distincts (certaines appartenant à deux types) :

- 16 stations de contrôle de surveillance,
- 10 sont des stations de contrôle opérationnel,
- 4 stations de contrôle d'enquête

Elles ont été suivies dans le cadre de la campagne d'échantillonnage de carême 2010. Les stations de surveillance sont les même que celles suivies en 2009, à l'exception des stations Pocquet RN1 et Fontane. La station Palourde Lézarde est en 2010 à la fois une station de référence et une station de surveillance.

Les stations sont présentées plus précisément dans le tableau suivant.

RAPPORT FINAL Page 7/135

Tableau 1. Présentation des stations de contrôle de surveillance, opérationnel et d'enquête 2010 pour la Martinique.

					Coordonnées WGS84					
Entité hydrographique	Nom station	Code Asconit	Code SANDRE	Type station	an	nont	a	val	Alt.*	
					х у		х у			
CERON	RD10 Habitation Céron	ACR	08015101	Surveillance	691 734	1 640 376	696 314	1 640 435	4	
GRANDE RIVIERE	Amont stade Grand'Rivière	GRS	08102101	Surveillance	696 196	1 644 364	696 307	1 644 431	30	
ROXELANE	St-Pierre (ancien pont)	ROS	08329101	Surveillance, Opérationnel	696 106	1 631 298	696 106	1 631 298	7	
CAPOT	Pr AEP-Vivé Capot	CAV	08115101	Surveillance, Opérationnel	704 672	1 640 447	704 748	1 640 542	50	
SAINTE MARIE	Pont RD24 St-Marie	BER	08213101	Surveillance, Opérationnel	714 639	1 634 206	714 639	1 634 206	14	
CARBET	Fond Baise	CAF	08322101	Surveillance	697 164	1 627 610	697 164	1 627 610	46	
LEZARDE	Gué de la Désirade	LEG	08521101	Surveillance, Opérationnel	715 897	1 622 096	715 897	1 622 096	35	
LEZARDE	Pont RN1	LEP	08521102	Surveillance, Opérationnel	716 926	1 616 042	717 040	1 617 140	12	
PETITE LEZARDE	Pont Belle-Ile	PLB	08504101	Surveillance, Opérationnel	716 103	1 623 345	716 103	1 623 345	54	
PETITE RIVIERE	Brasserie Lorraine	PRB	08533101	Surveillance	718 203	1 617 851	718 203	1 617 851	15	
LORRAIN	Amont confluence Pirogue	LOP	08203101	Surveillance	705 760	1 630 873	705 760	1 630 873	120	
GALION	Grand Galion	GAG	08225101	Surveillance, Opérationnel	719 611	1 628 057	719 611	1 628 057	8	
MADAME	Pont de Chaîne	MAC	08423101	Surveillance, Opérationnel	707 832	1 616 898	707 832	1 616 898	18	
SALEE	Petit Bourg	COP	08803101	Surveillance, Opérationnel	719 588	1 609 280	719 588	1 609 280	9	
OMAN	Dormante	OMD	08824101	Surveillance, Opérationnel	719 758	1 602 517	719 698	1 602 495	9	
LORRAIN	Séguineau	LOS	08205101	Enquête	710 261	1 639 662	710 261	1 639 662	10	
GRDE RIVIERE PILOTE	Aval bourg Rivière Pilote	PIB	08813102	Enquête	755 514	1 602 043	755 514	1 602 043	3	
MONSIEUR	Pont de Montgérald	MOM	08412102	Enquête	704 666	1 617 492	704 666	1 617 492	12	
CASE NAVIRE	Case Navire (bourg Schoelcher)	CBN	08302101	Enquête	704 663	1 617 496	704 663	1 617 496	8	
LEZARDE	Palourde	PAL	8501101	Surveillance	709944	1627925	710050	1627862	250	

^{*} Valeurs d'altitudes correspondant aux relevés GPS effectués lors de la campagne 2009.

Figure 1. Carte de localisation générale des stations du réseau de surveillance et d'enquête.

2.2. Caractérisation des conditions physico-chimiques

Des mesures *in situ* des principaux paramètres physico-chimiques (température, pH, conductivité, oxygène dissous et taux de saturation) sont réalisées afin de caractériser sommairement les conditions physico-chimiques de chaque site. Ces mesures permettent en outre d'appréhender les variations majeures des conditions physico-chimiques « de base » sur les stations au cours des différentes campagnes.

Les mesures sont réalisées au cours de la campagne de carême, à l'aide d'une sonde multiparamétrique conformément aux prescriptions nationales.

2.3. Analyse floristique des diatomées

Les **Diatomées** font partie des meilleurs bioindicateurs utilisés en routine dans l'évaluation de la qualité des cours d'eau. L'expérience accumulée dans l'application de cet indicateur en Martinique et plus largement dans les milieux insulaires permet au fur et à mesure d'affiner la connaissance sur l'écologie des taxons locaux. Plus précisément, les avancées en matière de systématique réalisées dans le cadre du programme d'étude et de recherche « Mise au point d'un indice de bioindication de la qualité de l'eau à partir des diatomées en Martinique » ont été utilisées lors de l'analyse de ces échantillons. Les taxons ont cependant été encodés de manière cohérente avec les études précédemment réalisées dans le cadre des réseaux de référence et de surveillance.

Conformément à la circulaire DCE 2004/08, les analyses de la flore diatomique permettent de définir :

- La composition taxonomique des peuplements,
- Leur diversité,
- L'abondance relative des différentes espèces identifiées.

2.3.1. Protocole de terrain

Les prélèvements de diatomées sont effectués conformément à la norme <u>NF T 90-354 de</u> décembre 2007.

L'échantillonnage s'effectue en priorité en faciès lotique, sur les supports durs naturels le plus stable possible. Le prélèvement sur support meuble (sable, vases,...) et sur bois sont formellement proscrits pour le calcul de l'IBD.

La surface à échantillonner afin d'obtenir une flore diatomique représentative est d'environ 100 cm² minimum. L'échantillonnage est réalisé sur 5 substrats différents au minimum (20 cm² par substrat) ; ils sont rincés dans le courant pour éliminer les particules et/ou valves éventuellement déposées. L'échantillon ainsi récolté sur le terrain est conditionné immédiatement par fixation au formol neutralisé (10 %).

Notre expérience des milieux tropicaux relativement pauvres en matériel diatomique nous pousse maintenant à augmenter notre effort d'échantillonnage de manière systématique : une dizaine de substrats ont été prélevés, permettant de recueillir du matériel diatomique sur une surface total d'au moins 1000 cm².

Une feuille de terrain, qui résume les conditions de prélèvement, est systématiquement remplie sur place. Les feuilles de terrain "diatomées" sont regroupées en annexe.

2.3.2. Analyse en laboratoire

La préparation, le montage des lames de diatomées et l'analyse des échantillons ont été réalisés conformément à la <u>norme NF T 90-354 de décembre 2007</u>.

Toutefois, la méthodologie a également été adaptée. En effet, 2 cycles complets de nettoyage au peroxyde d'hydrogène (H_2O_2) concentré et acide chlorhydrique (élimination des particules minérales et des carbonates), suivi de rinçages successifs à l'eau déminéralisée sont très souvent nécessaires pour obtenir des lames de bonne qualité et garantir ainsi la

fiabilité des inventaires. Ces opérations sont maintenant systématiquement réalisées dans le cadre des échantillons prélevés en Martinique et Guadeloupe.

La détermination des espèces et le dénombrement des unités diatomiques ont ensuite été réalisés grâce à un microscope de type LEICA DMLB muni du contraste de phase et d'une caméra (acquisition d'image et mesure des taxons). Le comptage est effectué sur 400 individus minimum (l'IBD ne peut être calculé en dessous de ce nombre).

La saisie codifiée de chaque comptage, à l'aide du logiciel OMNIDIA, permettra d'obtenir la liste floristique, l'estimation de l'abondance relative des taxa et le calcul de plusieurs indices diatomiques.

Deux indices diatomiques sont calculés : **l'indice de Polluosensibilité Spécifique** (IPS) (Cemagref, 1982) et **l'indice Biologique Diatomées** (IBD) (méthode normalisée AFNOR NF T 90-354, juin 2000 ; Prygiel et Coste, 2000).

> l'Indice de Polluosensibilité Spécifique (I.P.S.) :

Il est considéré comme l'indice le plus précis. Contrairement à d'autres indices qui utilisent une liste de taxa limitée pour leur calcul, l'IPS utilise toutes les espèces (sauf exception). Il reste néanmoins difficile à utiliser car il nécessite une bonne connaissance de l'autoécologie de toutes les espèces. Les tests menés antérieurement sur les cours d'eau de Martinique, de Guadeloupe et de la Réunion ont démontré la pertinence d'utiliser cet indice en milieu tropical insulaire.

l'Indice Biologique Diatomées (I.B.D.) :

Contrairement à l'IPS, l'IBD se base sur un nombre limité de taxa correspondant aux 209 taxa les plus fréquemment rencontrés dans les rivières de France métropolitaine. Dernièrement, cet indice a été révisé (Norme NF T 90-354 de décembre 2007). Il comporte dorénavant 1478 taxa dont 476 synonymes anciens et 190 formes anormales. **Ce sont donc 812 taxa de rang spécifique ou infra-spécifique qui sont pris en compte par le nouvel IBD**. Bien qu'il reste peu de taxa présents sur le réseau métropolitain à ne pas être pris en compte par l'IBD, c'est encore le cas de certains taxa inventoriés en Martinique. On observe cependant une assez bonne corrélation entre les valeurs de l'IBD et celles de l'IPS.

L'IPS et l'IBD varient de 1 (eaux « très polluées ») à 20 (« eaux pures »).

2.3.3. Déroulement des prélèvements

Les prélèvements de la flore de diatomées ont été menés conformément au protocole d'échantillonnage présenté précédemment. Les dates des prélèvements sont précisées dans le tableau ci-dessous.

Les conditions de prélèvements sont signalées dans la fiche terrain remplie sur place, lors du prélèvement (annexe).

Tableau 2 : Date des prélèvements de diatomées - campagne 2010 - Stations de Surveillance

Cours d'eau	Nom station	Code SANDRE	Type DCE ou complémentaire	Date de	Préleveur	Système de		VGS84 UMT Nord u 20)	Altitude (m)
Cours a caa	Nom Station	COUC DAND IL	Type Dez ou complementaire	prélèvement	Treferen	coordonnées	Y (latitude)	X (longitude)	Alticude (III)
Lorrain	Séguineau	08205101	enquête	20/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1639761	710369	10
Grande Rivière Pilote	Aval Bourg Rivière Pilote	08813102	enquête	21/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1602318	725916	3
Monsieur	Pont de Montgérald	08412102	enquête	25/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1616830	710294	12
Case Navire	Case Navire (bourg Schœlcher)	08302101	enquête	25/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1617550	704684	8
Grand Rivière	Stade de Grand Rivière	08102101	Surveillance	19/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1644420	696250	30
Lorrain	Amont confluent Pirogue	08203101	Surveillance	20/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1634935	709348	120
Carbet	Fond Baise	08322101	Surveillance	25/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1627631	697235	46
Lézarde	Palourde Lézarde	08501101	Surveillance/Référence	28/04/2010	AEG	WGS84 (UMT Nord fuseau 20)	1627908	709955	250
Petite Rivière	Brasserie Lorraine	08533101	Surveillance ACER	26/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1617816	718198	15
Anse Céron	RD 10 Habitation Céron	08015101	Surveillance ACER	18/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1640435	690985	4
Capot	Pr AEP-Vivé-Capot	08115101	Surveillance et opérationnel	19/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1640605	704821	50
Bezaudin	Pont RD24 Sainte-Marie	08213101	8213101 Surveillance et opérationnel		AEG	WGS84 (UMT Nord fuseau 20)	1634170	714635	14
Galion	Grand Galion	08225101	Surveillance et opérationnel	20/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1628015	719613	8
Oman	Dormante	08824101	Surveillance et opérationnel	21/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1602722	719762	9
Rivières des Coulisses	Petit Bourg	08803101	Surveillance et opérationnel	20/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1609275	719567	9
Lézarde	PONT RN1	08521102	Surveillance et opérationnel	21/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1617085	716980	12
Lézarde	Gué de la Désirade	08521101	08521101 Surveillance et opérationnel		AEG	WGS84 (UMT Nord fuseau 20)	1622384	715810	35
Lézarde	Pont Belle-Île	08504101	Surveillance et opérationnel	26/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1623401	716067	54
Madame	Pont de Chaînes	08423101	Surveillance et opérationnel	25/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1617079	707832	18
Roxelane	Saint Pierre (ancien pont)	08329101	Surveillance et opérationnel	18/05/2010	AEG	WGS84 (UMT Nord fuseau 20)	1631359	696189	7

Rapport de synthèse Page 12/135

2.4. Etude de la macrofaune benthique

La faune d'un hydrosystème intègre la variabilité spatio-temporelle de l'environnement. Toute modification du milieu est donc susceptible d'impacter cette faune.

La grande sensibilité des invertébrés benthiques aux changements de leur environnement (modifications physiques, biologiques et/ou physico-chimiques, d'origines naturelles ou anthropiques) et leur rôle clef dans le fonctionnement des écosystèmes aquatiques font de ces organismes de bons indicateurs locaux. Leurs peuplements peuvent donc être étudiés, d'un point de vue qualitatif (taxons présents) et quantitatif (dénombrements des organismes), pour estimer l'intégrité biotique des milieux aquatiques, en parallèle avec un suivi de la qualité physico-chimique de l'eau.

2.4.1. Principe de la méthode

Conformément aux prescriptions du cahier des charges, le protocole de prélèvement de la faune des macroinvertébrés benthiques est issu des préconisations de la circulaire DCE 2007-22, rectifiée DCE 2008/27 DCE du 20 mai 2008, relative à la constitution et la mise en œuvre du réseau des sites de référence pour les eaux douces de surface (30 mars 2007).

Sur chaque station, douze prélèvements représentatifs des principaux habitats (couple

substrat/vitesse du courant, sachant que l'on dispose de 12 substrats notés S et de 4 classes de vitesse notées V) repérés sur la station ont été réalisés à l'aide d'un filet Surber (vide de maille : 500 µm ; surface échantillonnée : 1/20 de m²), au prorata des surfaces de recouvrement relatives des différents habitats. Au préalable, chaque station a été parcourue sur toute sa longueur afin d'évaluer les paramètres hydromorphologiques (au besoin) ainsi que les pourcentages de recouvrement des différents substrats (systématiquement).

Les habitats marginaux (surface relative <5% de la surface de la station) et dominants ($\ge5\%$) ont alors été échantillonnés, ce qui permet d'obtenir une image globale moyenne du peuplement d'invertébrés de la station.

Un premier groupe de 4 prélèvements a été réalisé sur les habitats marginaux suivant l'ordre d'habitabilité des substrats (bocal 1). Un second groupe de 4 prélèvements a été réalisé sur les habitats dominants, suivant l'ordre d'habitabilité des substrats (bocal 2). Un dernier groupe de 4 prélèvements a été réalisé aussi dans les habitats dominants, mais en privilégiant la représentativité des habitats (bocal 3).

Le protocole de prélèvement détaillé des substrats est présenté en annexe (circulaire DCE 2007/22).

Une fois prélevés, les échantillons ont été fixés au formaldehyde (concentration finale 4%) en vue de la détermination en laboratoire des organismes qui les composent.

2.4.2. Stratégie d'échantillonnage

Sur chaque station, le plan d'échantillonnage des différents habitats (couple substrat/vitesse) a été établi en fonction des pourcentages de recouvrement des substrats sur la station.

Au niveau de chaque station, des mesures physico-chimiques de température, de pH, d'oxygène dissous et de conductivité ont été réalisées *in situ* à l'aide d'une sonde multi paramètres Quanta Hydrolab, dans la veine centrale du chenal principal. Des prélèvements d'eau ont aussi été réalisés pour être analysés en laboratoire.

2.4.3. Planning des opérations de terrain

Les investigations de terrain se sont déroulées du **19 avril au 26 mai 2010**. Les dates d'intervention ainsi que les conditions météorologiques et hydrologiques sur les stations sont présentées dans le tableau ci-dessous.

Tableau 3. Dates d'intervention, conditions météorologiques et hydrologie sur les stations de contrôle de surveillance et d'enquête Martinique au carême 2010.

Now station	Code		Echantillonnag	je 2010 (carême)
Nom station	SANDRE	Date	Météorologie	Hydrologie
RD10 Habitation Céron	08015101	20/04/2010	soleil	basses eaux puis montée
Amont stade Grand'Rivière	08102101	04/05/2010	soleil	basses eaux
St-Pierre (ancien pont)	08329101	20/04/2010	soleil	basses eaux puis montée
Pr AEP-Vivé Capot	08115101	26/05/2010	soleil	moyennes eaux
Pont RD24 St-Marie	08213101	26/05/2010	soleil	moyennes eaux
Fond Baise	08322101	20/04/2010	soleil	basses eaux
Gué de la Désirade	08521101	22/04/2010	soleil	basses eaux puis crue
Pont RN1	08521102	27/04/2010	soleil	moyennes eaux
Pont Belle-Ile	08504101	22/04/2010	soleil	basses eaux puis montée
Brasserie Lorraine	08533101	22/04/2010	soleil	basses eaux puis légère crue
Amont confluence Pirogue	08203101	21/04/2010	averses	basses eaux puis moyennes eaux
Grand Galion	08225101	28/04/2010	soleil	moyennes eaux
Pont de Chaîne	08423101	23/04/2010	soleil	basses eaux puis crue moyenne
Petit Bourg	08803101	26/04/2010	soleil	moyennes eaux
Dormante	08824101	26/04/2010	soleil	moyennes eaux
Palourde	8501101	28/04/2010	couvert	basses eaux
Séguineau	08205101	21/04/2010	soleil	basses eaux puis moyennes eaux
Aval bourg Rivière Pilote	08813102	26/04/2010	soleil	moyennes eaux
Pont de Montgérald	08412102	23/04/2010	soleil	basses eaux puis crue moyenne
Case Navire (bourg Schoelcher)	08302101	19/04/2010	soleil	moyennes eaux

Le mois de mai a été plus arrosé qu'à la normale, c'est pourquoi la fin des investigations de terrain a pu se dérouler dans des conditions de moyennes eaux sur certains cours d'eau. Cette montée des eaux n'est toutefois pas comparable à une crue (en termes d'intensité et de brutalité), ce qui laisse penser que les communautés d'invertébrés en place n'ont pas été perturbées par ce phénomène.

La campagne d'échantillonnage des invertébrés 2010 s'est déroulée dans des conditions climatiques stables, en période de carême particulièrement sèche et chaude. Cette période de sècheresse a fait suite à une saison des pluies peu arrosée en 2009. Malgré les pluies d'avril, le déficit pluviométrique cumulé depuis le mois d'août 2009 restait important. Ceci explique une situation d'étiage généralisée.

2.5. Etude de l'ichtyofaune et des macrocrustacés

2.5.1. Principe de la méthode

Le poisson constitue le sommet de la chaîne alimentaire dans les cours d'eau et l'appréciation de leurs états de santé peut être grandement améliorée par la caractérisation des peuplements pisciaires.

Conformément à la circulaire 2004/08, les éléments biologiques qui ont été collectés par ASCONIT Consultants permettront de définir :

- La composition du peuplement piscicole,
- L'abondance totale et par espèce,
- La structure en classes de tailles des espèces majoritaires.

Conformément aux prescriptions du cahier des charges, le protocole de prélèvement de l'ichtyofaune est issu des préconisations de la **norme NF EN 14011** (échantillonnage des pêches à l'électricité). Le protocole référence est désormais normalisé sous les références : XP T90-383 de Mai 2008. Ce texte reprend le protocole en usage pour les réseaux DCE (présenté lors de nos propositions 2007 et 2008).

L'objectif est d'estimer par pêche électrique, sur une aire déterminée, la composition et l'abondance (relative ou absolue) des espèces, et la structure de la population de poissons.

La technique de capture des **macrocrustacés**, populations très présentes en Martinique, étant efficace par pêche électrique, ceux-ci sont donc inventoriés en même temps que les poissons.

2.5.2. Stratégie d'échantillonnage

Dans le cadre des pêches réalisées pour les réseaux de surveillance DCE, l'Office National de l'Eau et de Milieux Aquatiques a mis en place un **protocole standardisé et cohérent avec les normes CEN** en matières d'échantillonnage des peuplements piscicoles en cours d'eau.

Deux types de méthodes d'échantillonnage peuvent être utilisés selon la taille de la rivière :

- Rivière large (> 8 m de large ou moins mais pas entièrement prospectable à pied) : échantillonnage par des unités ponctuelles d'échantillonnage (EPA) de deux types, les premières réparties régulièrement sur la station de manière à représenter la diversité des habitats, les secondes réparties sur les habitats attractifs de la station.



Figure 1 : Principes retenus pour la méthode d'échantillonnage des grands milieux.

Le sous-échantillon « complémentaire » n'est mis en œuvre par le responsable de la pêche que lorsqu'il estime qu'il est possible de capturer de nouvelles espèces, non représentée dans l'échantillon « représentatif ».

Les unités d'échantillonnage sont au nombre de 75 (sur une longueur= 20 x largeur moyenne). L'unité d'échantillonnage est une unité ponctuelle correspondant approximativement à un déplacement de l'anode sur un cercle d'environ 1 m de diamètre autour du point d'impact (sans déplacement de l'opérateur). Dans cette configuration, la surface échantillonnée est évaluée à environ 12,5m². Un temps de pêche compris entre 15 et 30 secondes sur chaque point est retenu comme valeur guide, sachant que l'épuisement du stock au niveau du point n'est pas recherché de manière systématique.

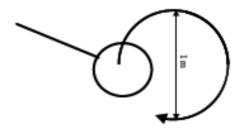


Figure 2 : Principe de mise en œuvre de l'unité d'échantillonnage ; déplacement de l'anode autour du point d'impact.

Sur le terrain, chaque unité d'échantillonnage fait l'objet d'une description sommaire concernant : le faciès, la position par rapport à la berge, la capture ou non de poissons. Lors de la phase de saisie, seules les informations synthétiques suivantes sont intégrées : nombre d'unité d'échantillonnage dans chaque type de faciès, nombre d'unités d'échantillonnage en berge et dans le chenal, nombre d'unités d'échantillonnage sans capture de poissons.

- Petit cours d'eau : échantillonnage complet ; longueur prospectée : égale au moins à 20 fois la largeur. Utilisation de deux anodes pour un cours d'eau >4m de large.

Dans le cas particulier des cours d'eau de la Martinique, qui présentent une forte densité d'individus rendant difficile un échantillonnage complet, une adaptation de la méthode ONEMA pour les rivières larges est proposée :

- Utilisation de la méthode par unités d'échantillonnages pour tous les cours d'eau (inclus les cours d'eau inférieurs à 8 m de large)

- Réduction de la longueur de la station de pêche (< 20 fois la largeur du cours d'eau) vu la succession rapprochée des séquences d'écoulement lent/rapide.
- Réduction de la surface des unités d'échantillonnages (déplacement de moins d'un mètre ou aucun déplacement) vu la densité en espèces des cours d'eau de l'île.

La prospection s'effectue à l'aide d'un appareil de pêche électrique. Les animaux capturés sont identifiés à l'espèce (réf. Les atlas des poissons d'eau douce de Martinique, Keith), mesurés (mm) puis remis à l'eau. Si le nombre d'individus d'une espèce est très important, il sera procédé à des mesures sur un sous-échantillon représentatif d'au moins 50 individus qui respectera la structure de taille globale de la population. Le sous-échantillon sera prélevé sur un lot dont l'ensemble des individus sera comptabilisé et le poids total évalué.

Néanmoins, la technique de pêche habituelle n'est pas applicable sur la station Pilote aval en raison du caractère saumâtre des eaux. La pose de filets multimailles (diamètres de 5 à 55 mm nœud à noeud) au cours d'une nuit complète a alors été retenue sur cette station. L'absence de données antérieures sur ce type de pêche en Martinique rend toutes comparaisons des résultats impossibles.

Une campagne annuelle en période de carême a été réalisée sur l'ensemble des stations concernées. Celle-ci a eu lieu **du 19 au 31 mai 2010**.

2.5.3. Interprétation des résultats

L'évaluation de la qualité de l'eau par rapport à la faune piscicole ne se fait pas par le calcul de l'IPR comme c'est le cas en France métropolitaine. Le manque de données physico-chimiques en lien avec les inventaires ne permet pas d'établir de relation entre les espèces et la qualité de l'eau. De plus les investigations menées dans le cadre de l'Etat des lieux piscicole des rivières de la Martinique ont mis en évidence la relative homogénéité des peuplements piscicoles.

Les métriques requises par la DCE pour la définition des classes de qualité sont pour les poissons : la composition taxonomique, l'abondance, la tolérance des espèces, la structure en classe de taille/âge des populations.

Différents indices existent utilisant plusieurs types de métriques, dont :

- **IBI (Index of Biotic integrity) :** Utilise 12 métriques dont le nombre d'espèces, type d'espèces, tolérance, régime alimentaire, densité, biomasse, abondance, statut (introduit, endémique...), maladie...
- **EFI (European Fish Index):** Utilise 10 métriques qui sont liés au régime alimentaire, à la stratégie de reproduction, à l'habitat, à la tolérance et au comportement migratoire. Il ne répond pas à l'exigence de la DCE vis-à-vis de la structure en âge.

Ces indices utilisent des métriques qui ne sont ou ne peuvent être obtenus dans le cas de la Martinique, tel que la tolérance des espèces, la structure en âge. Par contre, il est possible de faire une évaluation de la qualité des cours d'eau (non DCE compatible) en utilisant des métriques comme le nombre d'espèce, la densité, la biomasse, le statut des espèces (introduite, endémique, etc.), le régime alimentaire et l'habitat. Un travail prospectif dans ce sens est développé dans le cadre de cette étude.

2.5.4. Eléments physico-chimiques dans le biote

Conformément à la réglementation en vigueur (arrêté du 25/01/2010), des analyses chimiques sur la matière vivante sont également réalisées dans le but de suivre l'état de contamination par certaines molécules dans cette matrice. Des échantillons de *Sycidium sp.* sont collectés afin de constituer des lots d'une masse suffisante (minimum 50 g) pour permettre le dosage de la chlordécone. Ces lots sont composés d'au moins 3 individus, tous de taille homogène, conditionnés dans des sachets en plastique. Les échantillons sont ensuite congelés puis envoyés au LDA 26 dans des glacières de carboglace. Les résultats sont exprimés en µg/kg de poids frais.

3. Résultats

3.1. Conditions physico-chimiques in situ

Les données physico-chimiques mesurées *in situ* sur chaque station sont récapitulées dans le tableau suivant.

D'une manière générale, comme pour les stations de référence, les valeurs moyennes calculées cette année pour les différents paramètres sont comparables à celles de la campagne de carême précédente. La conductivité se distingue également par ses valeurs plus hautes sur toutes les stations. Il faut d'ailleurs noter le pic (25 100 μ S/cm contre 2 000 μ S/cm en 2009) observé sur la Grande Rivière Pilote dû au très faible débit d'étiage qui a diminué la dilution des eaux marines (conductivité moyenne des eaux marines de 56 000 μ S/cm).

Parmi les 20 stations de surveillance et d'enquête, certaines stations se démarquent par rapport à un ou plusieurs paramètres :

- Les stations Pont RN1 (Lézarde), Aval Bourg Rivière Pilote et Petit Bourg (Salée) présentent toutes les trois une température élevée, supérieure à 30°C. De ces trois stations, seule Pont RN1 s'était déjà démarquée l'an passé pour sa température élevée.
- En ce qui concerne la conductivité de l'eau, certaines stations présentent naturellement une conductivité élevée. C'est le cas des stations Petit Bourg, Dormante et Aval Bourg Rivière Pilote situées respectivement sur les rivières Salée, Oman et la Grande Rivière Pilote. Depuis 2007, on observe également des conductivités élevées sur les stations Brasserie Lorraine (PRI015) sur la Petite Rivière et Pont de Chaines (MAD018) sur Rivière Madame.
- Tout comme l'an passé, la station Petit Bourg sur la Rivière Salée est la moins bien oxygénée avec une saturation de 80,9%.

Tableau 4. Paramètres physico-chimiques *in situ* de l'eau des stations de contrôle de surveillance et d'enquête 2010 de Martinique, en période de carême.

Nom station	Code	т°	рН	Conductivité	Oxygénation		
Nom Station	SANDRE	T°C	U pH	μs/cm	mg/l	%	
RD10 Habitation Céron	08015101	24,30	8,03	134	8,14	97	
Amont stade Grand'Rivière	08102101	25,60	8,35	133	8,35	102,3	
St-Pierre (ancien pont)	08329101	29,00	8,11	240	7,41	96	
Pr AEP-Vivé Capot	08115101	25,50	8,30	148	7,52	91,3	
Pont RD24 St-Marie	08213101	27,55	8,25	171	7,11	87,2	
Fond Baise	08322101	28,80	8,34	147	7,68	98,3	
Gué de la Désirade	08521101	27,22	7,96	119	7,6	95,4	
Pont RN1	08521102	30,04	7,90	153	7,29	96,3	
Pont Belle-Ile	08504101	25,70	7,50	157	7,46	91,2	
Brasserie Lorraine	08533101	29,50	7,72	331	6,67	87,5	
Amont confluence Pirogue	08203101	24,20	7,84	100	8,97	96	
Grand Galion	08225101	28,95	7,72	156	6,89	89,3	
Pont de Chaîne	08423101	27,20	7,86	417	7,53	93,4	
Petit Bourg	08803101	30,78	7,81	407	6,1	80,9	
Dormante	08824101	27,95	7,66	570	6,71	85,9	
Palourde	8501101	24,4	7,85	75	7,53	90,0	
Séguineau	08205101	27,26	7,93	105	7,78	97,3	
Aval bourg Rivière Pilote	08813102	30,40	7,69	25100	6,5	89,4	
Pont de Montgérald	08412102	27,40	7,60	197	7,13	90,1	
Case Navire (bourg Schoelcher)	08302101	26,70	7,87	160	7,87	97,8	
	Moyenne	27,4	7,91	1451,0	7,4	92,6	
	Min	24,2	7,50	75,0	6,1	80,9	
	Max	30,8	8,35	25100,0	9,0	102,3	
	ET	2,0	0,25	5567,9	0,7	5,2	

3.2. Analyse floristique des diatomées

3.2.1. Diversité et richesse taxonomique

Les inventaires diatomiques, exprimés en ‰, sont fournis en annexe.

La diversité d'une biocénose peut s'exprimer simplement par le nombre d'espèces présentes. Mais ce nombre n'est pas souvent connu avec exactitude. Plusieurs indices de diversité ont été proposés, permettant de comparer entre eux des peuplements. Nous avons calculé l'indice de Shannon et Weaver (1949). Un indice de diversité élevé correspond à des conditions de milieu favorables (en particulier stabilité) permettant l'installation d'un

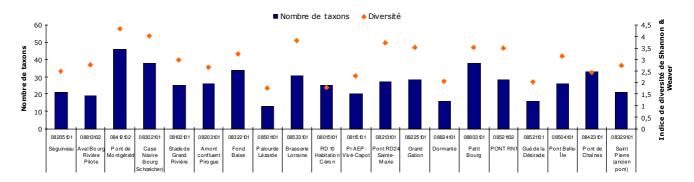

peuplement équilibré, plutôt riche en espèces, mais où aucune espèce ne domine fortement les autres.

Tableau 5 : Richesse spécifique et indice de diversité des peuplements – campagne 2010 – Stations de surveillance

Cours d'eau	Nom station	Code SANDRE	Date de prélève ment	Effectif	Nombre de taxons	Div ersité	Equita bil ité
Lorrain	Séguinea u	08205101	20/05/2010	402	21	2,49	0,57
Grande Rivière Pilote	Aval Bourg Rivière Pilote	08813102	21/05/2010	405	19	2,77	0,65
Monsieur	Pont de Montgérald	08412102	25/05/2010	400	46	4,33	0,78
Case Navire	Case Navire (bourg Schœlcher)	08302101	25/05/2010	401	38	4,01	0,76
Grand Rivière	Stade de Grand Rivière	08102101	19/05/2010	400	25	2,99	0,64
Lorrain	Amont confluent Pirogue	08203101	20/05/2010	400	26	2,66	0,57
Carbet	Fond Baise	08322101	25/05/2010	431	34	3,25	0,64
Léza rde	Palourde Lézarde	08501101	28/04/2010	402	13	1,75	0,47
Petite Rivière	Brasserie Lorraine	08533101	26/05/2010	420	31	3,82	0,77
Anse Céron	RD 10 Habitation Céron	08015101	01 18/05/2010 411		25	1,79	0,39
Capot	Pr AEP-Vivé-Capot	08115101	19/05/2010	446	20	2,28	0,53
Bezaudin	Pont RD24 Sainte-Marie	08213101	19/05/2010	400	27	3,73	0,78
Galion	Grand Galion	08225101	20/05/2010	400	28	3,52	0,73
Oman	Dormante	08824101	21/05/2010	401	16	2,07	0,52
Rivières des Coulisses	Petit Bourg	08803101	20/05/2010	400	38	3,51	0,67
Léza rde	PONT RN1	08521102	21/05/2010	414	28	3,5	0,73
Léza rde	Gué de la Désirade	08521101	26/05/2010	400	16	2,04	0,51
Léza rde	Pont Belle-Île	08504101	26/05/2010	400	26	3,13	0,67
Madame	Pont de Chaînes	08423101	25/05/2010	450	33	2,45	0,49
Roxelane	Saint Pierre (ancien pont)	08329101	18/05/2010	406	21	2,73	0,62
				Moyenne	27	2,94	0,62
				minimum	13	1,75	0,39
				maximum	46	4,33	0,78

La figure ci-après représente les valeurs de richesse taxonomique (nombre de taxa) et de diversité (indice de Shannon & Weaver), elles même consignées dans le tableau suivant.

Figure 2 : Richesse et diversité spécifique des peuplements - campagne 2010 – Stations de surveillance.

Le nombre de taxons est très variable d'une station à l'autre. Il est compris entre 13 pour la Lézarde à Palourde Lézarde et 46 sur la Rivière Monsieur au Pont de Montgérald. La richesse spécifique moyenne est de 27 taxons sur le réseau de surveillance 2010.

Les valeurs de diversité (indice de Shannon & Weaver), se révèlent également très variables. L'équitabilité a également été calculée. Contrairement à l'indice de Shannon & Weaver, elle permet de s'affranchir des variations du nombre de taxons et de mieux appréhender l'équilibre entre les espèces au sein du peuplement. La diversité spécifique varie de 1,75 (Equitabilité = 0,47) dans la Lézarde à Palourde Lézarde, à 4,33 (Equitabilité = 0,78) dans la Rivière Monsieur au Pont de Montgérald.

3.2.2. Indices diatomiques (IPS-IBD)

Les notes obtenues avec l'Indice de Polluosensibilité Spécifique (IPS) et l'Indice Biologique Diatomées (IBD) sont consignées dans le tableau ci-dessous.

Tableau 6 : Indices diatomiques (IPS et IBD) et classes de qualité – campagne 2010 – Stations de surveillance

Cours d'eau	Code SANDRE	Date de prélèvement	IPS	IBD		
Lorrain	08205101	20/05/2010	16,8	20		
Grande Rivière Pilote	08813102	21/05/2010	8,8	5,8		
Monsieur	08412102	25/05/2010	10	13,8		
Case Navire	08302101	25/05/2010	10,4	14,6		
Grand Rivière	08102101	19/05/2010	13,3	13,6		
Lorrain	08203101	20/05/2010	14	15,6		
Carbet	08322101	25/05/2010	16,5	17,2		
Lézarde	08501101	28/04/2010	19,3	20		
Petite Rivière	08533101	26/05/2010	10,6	14,7		
Anse Céron	08015101	18/05/2010	11,7	16,6		
Capot	08115101	19/05/2010	17,5	18,9		
Bezaudin	08213101	19/05/2010	13,4	15,7		
Galion	08225101	20/05/2010	13,6	16		
Oman	08824101	21/05/2010	12,9	15,4		
Rivières des Coulisses	08803101	20/05/2010	6,6	7,8		
Lézarde	08521102	21/05/2010	10,3	14,8		
Lézarde	08521101	26/05/2010	18,5	20		
Lézarde	08504101	26/05/2010	14,1	17,4		
Madame	08423101	25/05/2010	10,4	11		
Roxelane	08329101	18/05/2010	9,1	10		

IBD (et IPS) ≥ 17	Qualité très bonne
17 > IBD (et IPS) ≥ 13	Qualité bonne
13 > IBD (et IPS) ≥ 9	Qualité moyenne
9 > IBD (et IPS) ≥ 5	Qualité médiocre
IBD (et IPS) < 5	Qualité mauvaise

Certaines stations du réseau de surveillance présentent un risque de non atteinte du bon état écologique avec un IBD de **moyenne** qualité ; il s'agit des rivières Monsieur (Pont de Montgérald), Case Navire (Bourg Schoelcher), Petite Rivière (Brasserie Lorraine), Anse Céron (RD 10 Habitation Céron), Oman (Dormante), Lézarde (Pont RN1), Madame (Pont de Chaînes) et Roxelane (Ancien Pont à St Pierre).

Par ailleurs, avec une note indicielle IBD en qualité **médiocre**, deux sites du réseau de surveillance montrent un **très fort** risque de non atteinte du bon état écologique : la Grande Rivière Pilote à l'aval du bourg de Rivière Pilote et la Rivière des Coulisses à l'aval de petit Bourg.

Le résultat est cependant à nuancer en ce qui concerne la Grande Rivière Pilote ; en effet, cette station subit une influence marine avérée et les indices diatomiques continentaux considèrent la salinité excessive comme une forme sévère de contamination du milieu. L'IBD n'est, dans ce cas précis, pas adapté pour juger de la qualité biologique globale de ce milieu.

A noter : les notes indicielles IPS sont globalement plus pessimistes que les notes IBD, et déclassent les stations en qualité inférieure.

3.2.3. Bilan comparatif 2005-2010

Les notes indicielles IBD sont récapitulées depuis le début du suivi des stations dans le tableau ci-dessous. A des fins de comparaison, **elles ont toutes été recalculées** avec le logiciel Omnidia 5.3 (base avril 2009) à partir des inventaires réalisés depuis 2005 pour les stations de référence et depuis 2007 pour les sites de surveillance.

Le réseau de surveillance s'est enrichi au cours du temps de plusieurs stations. Au total, 20 stations composent actuellement ce réseau depuis 2009 dont 15 sont suivies depuis 2007.

Ces chroniques permettent de visualiser de grandes tendances évolutives.

Tableau 7: Evolution des valeurs indicielles de 2007 à 2010 - Stations de surveillance

Cours d'eau		Code SANDRE	Date de prélèvement	Carême 2007	Carême 2008	Carême 2009	Carême 2010
Lorrain	Séguineau	08205101	20/05/2010			15,3	20,0
Grande Rivière Pilote	Aval Bourg Rivière Pilote	08813102	21/05/2010			2,4	5,8
Monsieur	Pont de Montgérald	08412102	25/05/2010			12,9	13,8
Case Navire	Case Navire (bourg Schœlcher)	08302101	25/05/2010			11,7	14,6
Grande Rivière	Stade de Grand Rivière	08102101	19/05/2010	17,0		14,2	13,6
Lorrain	Amont confluent Pirogue	08203101	20/05/2010	20,0		15,6	15,6
Carbet	Fond Baise	08322101	25/05/2010	13,1	14,8	13,7	17,2
Lézarde	Palourde Lézarde	08501101	08501101 28/04/2010 19,5		20,0	19,8	20,0
Petite Rivière	Brasserie Lorraine	08533101	08533101 26/05/2010 12		13,6	14,9	14,7
Anse Céron	RD 10 Habitation Céron	08015101	08015101 18/05/2010			10,5	16,6
Capot	Pr AEP-Vivé-Capot	08115101	19/05/2010	13,5	19,1	11,3	18,9
Bezaudin	Pont RD24 Sainte-Marie	08213101	19/05/2010	19/05/2010 15,6		20,0	15,7
Galion	Grand Galion	08225101	20/05/2010	14,7	16,0	12,2	16,0
Oman	Dormante	08824101	21/05/2010	17,5	9,9	10,8	15,4
Rivières des Coulisses	Petit Bourg	08803101	20/05/2010	14,8	9,8	7,8	7,8
Lézarde	PONT RN1	08521102	21/05/2010		17,8	18,9	14,8
Lézarde	Gué de la Désirade	08521101	26/05/2010	20,0	10,7	20,0	20,0
Lézarde	Pont Belle-Île	08504101	26/05/2010	13,7	11,1	19,3	17,4
Madame	Pont de Chaînes	08423101	25/05/2010	15,6	12,7	14,4	11,0
Roxelane	Saint Pierre (ancien pont)	08329101	18/05/2010	13,9	10,0	9,6	10,0

Stations dont la qualité biologique globale tend à se dégrader :

- Grande Rivière (stade de Grand Rivière) depuis 2007
- Lorrain (amont confluence Pirogue) dégradation par rapport à 2007 stabilité en 2009 et 2010
- Rivière des Coulisses (Petit Bourg) depuis 2007
- Lézarde (Pont RN1) entre 2009 et 2010
- Roxelane (St Pierre) entre 2007 et 2008 puis stabilité jusqu'en 2010

Stations ayant subit une dégradation ponctuelle :

- Anse Céron (Habitation Céron) en 2009
- Capot (AEP Vivé Capot) en 2009

- Galion (Grand Galion) en 2009
- Oman (Dormante) en 2008 et 2009
- Lézarde (Gué de la Désirade) en 2008

Stations ne montrant aucune tendance évolutive :

• Madame (Pont de chaînes)

Stations dont la qualité biologique globale tend à s'améliorer :

- Lorrain (Séguineau)
- Monsieur (Pont de Montgérald)
- Case Navire (Bourg Schoelcher)

Cependant, ces trois stations ne sont pas suivies depuis suffisamment longtemps ; les résultats de carême 2011 permettront d'infirmer ou de confirmer cette tendance.

- Carbet (Fond Baise)
- Petite Rivière (Brasserie Lorraine)

Les résultats des notes IBD concernant la Grande Rivière Pilote à l'aval de Petit Bourg sont difficilement interprétables car le peuplement est conditionné par des influences marines. Cette station présente un intérêt floristique certain, mais les indices diatomiques continentaux ne sont pas adaptés pour le suivi de la qualité de cette masse d'eau.

3.2.4. Conclusion

Six stations sont considérées comme étant de **très bonne qualité biologique** selon l'IBD en 2010 :

- La Rivière du Lorrain à Séguineau
- La Rivière du Carbet à Fond Baise
- La Rivière Lézarde à Palourde Lézarde
- La Rivière Capot à AEP Vivé Capot
- La Rivière Lézarde au Gué de la Désirade
- La Rivière Lézarde à Pont Belle Île

Dix sont de **bonne qualité biologique** selon l'IBD :

- La Rivière Monsieur au Pont de Montgérald
- La Rivière Case Navire au bourg de Schoelcher
- La Grande Rivière au stade de Grand Rivière
- La Rivière du Lorrain en amont de la confluence Pirogue
- La Petite Rivière à Brasserie Lorraine
- La Rivière Anse Céron à l'Habitation Céron
- La Rivière Bezaudin au Pont RD 24 à Ste Marie
- La Rivière du Galion à Grand Galion
- La Rivière Oman à Dormante

La Rivière Lézarde au Pont RN1

Deux masses d'eau sont de moyenne qualité biologique selon l'IBD :

- La Rivière Madame au Pont de Chaînes
- La Roxelane à l'ancien pont à St Pierre

Ces deux masses d'eau présentent donc un risque de non atteinte du bon état écologique.

Deux masses d'eau sont de **médiocre qualité biologique** selon l'IBD :

- La Grande Rivière Pilote à l'aval du bourg de Rivière Pilote (influence marine)
- La Rivière des Coulisses à l'aval de Petit Bourg

Ces deux masses d'eau présentent donc un **fort** risque de non atteinte du bon état écologique.

Cependant, les résultats présentés ci-avant ne reflètent probablement pas l'état biologique (écologique) réel des masses d'eau. En effet, ils découlent de méthodes indicielles élaborées pour les zones tempérées occidentales (métropole) et sont difficilement transposables en contexte insulaire tropical tel que la Martinique.

Un indice diatomique martiniquais est en cours d'élaboration :

- Travail en systématique pour décrire et intégrer les taxons endémiques
- Définition (pour les nouvelles espèces) ou redéfinition (pour les espèces connues mais ayant une écologie sensiblement différente de celle observée en métropole) des traits écologiques de toutes les espèces présentes dans les cours d'eau martiniquais
- Création d'un indice diatomique martiniquais adapté aux conditions biogéographiques tropicales insulaires

Ce travail de recherche permettra de définir avec plus de précision la qualité biologique globale des masses d'eau de Martinique.

3.3. Etude de la macrofaune benthique

3.3.1. Caractérisation hydromorphologique des stations

Les tableaux suivants reprennent les pourcentages de recouvrement des substrats estimés et les plans d'échantillonnages établis pour chaque station.

Tableau 8. Prélèvements des macroinvertébrés benthiques (couple substrat/vitesse) sur les stations du réseau RCS 2010 de Martinique.

Code			Sub	stra	it (9	6 d€	rec	ouv	reme	nt)			Marginaux				D	ominants	habitabili	té	Dominants représentativité			
station	В	Ну	L	R	PG	В	G	He	٧	s	Α	D	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12
ACR			1	3	40	30	20			6			S3/N4	S28/N4	S3/N5	S28/N5	S24/N4	S30/N4	S9/N4	S25/N4	S24/N5	S30/N5	S9/N5	S25/N5
GRS			2		30	38	25			2		3	S3/N4	S3/N5	S25/N3	S29/N4	S24/N4	S24/N5	S30/N4	S9/N5	S24/N3	S30/N4	S30/N5	S9/N3
ROS					50	30	10	6		4			S25/N5	S25/N5	S25/N5	S25/N5	S24/N5	S9/N5	S10/N5	S30/N4	S24/N5	S9/N5	S30/N4	S10/N4
CAV			1		30	40		1		13		15	S3/N4	S3/N4	S10/N4	S10/N4	S24/N4	S30/N4	S25/N4	S29/N4	S24/N5	S25/N5	S30/N3	S29/N3
BER			3	1	30	25	10	8		22		1	S3/N4	S3/N5	S28/N5	S29/N5	S24/N5	S30/N5	S9/N5	S10/N5	S24/N4	S30/N4	S25/N5	S25/N1
CAF			3	1	30	30	25			10		1	S3/N3	S3/N3	S28/N3	S29/N3	S24/N4	S30/N4	S9/N4	S25/N4	S24/N3	S9/N3	S25/N3	S24/N4
LEG			1		22	28	22	2		18		7	S3/N3	S3/N1	S3/N1	S10/N4	S24/N4	S30/N4	S9/N3	S24/N5	S24/N3	S30/N1	S9/N5	S29/N4
LEP			4	1	42	3	30	1		15		4	S3/N4	S28/N4	S30/N4	S10/N5	S24/N4	S9/N4	S25/N5	S24/N3	S24/N4	S9/N3	S9/N5	S25/N3
PLB			3	1	10	30	13			40		3	S3/N3	S3/N4	S28/N3	S29/N3	S24/N4	S30/N3	S9/N3	S25/N3	S24/N4	S30/N5	S9/N4	S25/N5
PRB					15	20	15	10		20		20	S10/N1	S10/N1	S29/N1	S29/N1	S24/N1	S30/N1	S9/N1	S10/N1	S25/N1	S29/N1	S24/N5	S30/N5
LOP			1	1	30	50	10			8			S3/N5	S3/N5	S28/N3	S28/N3	S24/N4	S30/N4	S9/N4	S25/N4	S24/N5	S30/N5	S9/N3	S25/N3
GAG			4		17		45	3		30		1	S3/N4	S3/N5	S10/N5	S29/N3	S24/N4	S24/N5	S9/N5	S25/N5	S9/N4	S9/N3	S24/N4	S25/N3
MAC		1	2	1	35	35	19	1		5		1	S2/N5	S3/N5	S28/N5	S10/N1	S24/N5	S30/N5	S9/N5	S25/N5	S24/N3	S30/N4	S9/N1	S25/N3
COP			4		30	10	20	20		16		0	S3/N1	S3/N1	S3/N1	S3/N1	S24/N1	S30/N1	S9/N1	S10/N1	S25/N1	S24/N1	S30/N1	S9/N1
OMD	1		10	8	30	14	20			14		3	S1/N3	S1/N3	S29/N1	S29/N1	S3/N1	S28/N1	S24/N1	S30/N1	S3/N3	S24/N3	S9/N1	S25/N1
LOS			1	1	35	45	10	2		6			S3/N5	S3/N5	S28/N5	S10/N5	S24/N5	S30/N5	S9/N5	S25/N5	S24/N4	S30/N4	S9/N4	S25/N5
PIB				3	30	4	13			50			S28/N3	S28/N3	S30/N3	S30/N3	S24/N3	S24/N3	S9/N3	S25/N3	S24/N2	S24/N3	S9/N3	S25/N3
MOM			1	1	35	25	13	7		16		2	S3/N5	S3/N3	S28/N4	S29/N5	S24/N5	S30/N5	S9/N3	S10/N5	S24/N4	S30/N4	S10/N3	S25/N3
CBN			2	1	25	35	15	3		18		1	S3/N5	S28/N5	S29/N5	S10/N5	S24/N5	S30/N5	S9/N5	S25/N5	S24/N1	S30/N3	S9/N3	S25/N3

<u>Légende</u>:

Substrat (Sandre)	SANDRE	Habitabilité
Bryophytes	S1	11
Hydrophytes	S2	10
Litieres	S3	9
Branchage, racines	S28	8
Pierres, galets	S24	7
Blocs	S30	6
Granulats	S9	5
Helophytes	S10	4
Vases	S11	3
Sables, limons	S25	2
Algues	S18	1
Dalles, argiles	S29	0

CLASSE VITESSE (cm/s)	SANDRE	VITESSE
v<5	N1	Nulle
25>v≥5	N3	Lente
75>v≥25	N5	Moyenne
150>v≥75	N4	Rapide

3.3.2. Abondance et richesse taxonomique

Les abondances en macroinvertébrés benthiques sur les différentes stations en carême 2010 ont été comparées aux résultats des années précédentes.

Dans l'objectif de réaliser un atlas des macroinvertébrés benthiques et un indice biotique adapté aux cours d'eau de la Martinique, la détermination des organismes a cette année été poussée à des niveaux taxonomiques plus précis. Les richesses taxonomiques observées en 2010 ne peuvent alors être comparées à celles des années précédentes. La richesse taxonomique est tout de même présentée.

Tableau 9. Abondances en macroinvertébrés benthiques des stations des réseaux de contrôle suivies depuis 2007 en période de carême.

Station	Code Sandre	2010	2009	2008	2007
RD10 Habitation Céron	08015101	427	794		662
Stade Grand'Rivière	08102101	455	372		3160
St-Pierre (ancien pont)	08329101	8329101 2870 2099		8509	22953
AEP Vivé	08115101	08115101 1470 436		599	1213
Pont RD24 Sainte-Marie	08213101	642	463	604	1590
Fond Baise	08322101	592	422	584	1524
Gué de la Désirade	08521101	530 763		880	1491
Pont RN1	08521102	313	280	1135	494
Pont Belle Ile	08504101	162 318		731	2293
Brasserie Lorraine	08533101	300 175		1823	1890
Amont confluence pirogue	08203101	104 1356			966
Grand Galion	08225101	280	855	1165	617
Pont de Chaines	08423101	525	1463	909	2107
Petit Bourg	08803101	446	427	1942	898
Dormante	08824101	430	398	880	1888
Palourde Lézarde	8501101	216	428	1805	783
Séguineau	08205101	174	450		
Aval bourg	08813102	135			
Pont de Montgérald	08412102	654	1379		
Case Navire (bourg Schoelcher)	08302101	980	1149		
	Médiane	438	432	909	1508
Surveillance	Min	104	175	584	494
	Max	2870	2099	8509	22953
	Médiane	414	1149		
Enquête	Min	135	450		
1	Max	980	1379		

L'abondance médiane sur le réseau de surveillance en 2010 est bien inférieure à celles de 2007 et 2008 mais comparable à celle de 2009.

La valeur maximale d'abondance se retrouve sur la station St-Pierre (ancien pont), comme c'était le cas pour les années précédentes. Aucune autre station n'a une abondance totale de cette importance. A cette station, les oligochètes représentent près de 70% du peuplement, en termes d'abondance.

L'abondance minimale se retrouve à la station Amont confluence pirogue, alors que l'an passé cette station présentait une des abondances les plus élevées (plus de 1000 éphéméroptères en 2009).

Les stations de contrôle d'enquête ont des médianes d'abondance plus comparables en 2010 à celles des stations de surveillance.

Tableau 10. Richesse taxonomique au carême 2010 pour les stations du réseau de contrôle et de surveillance.

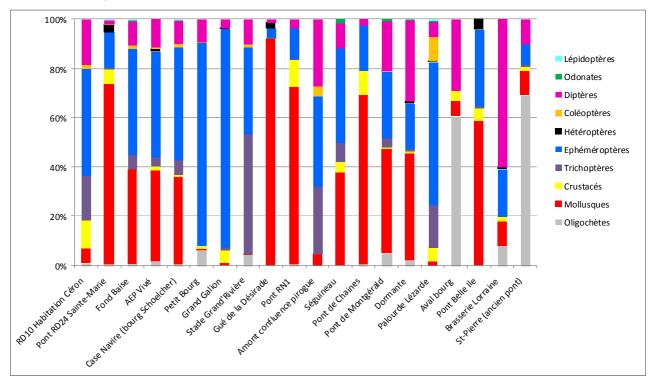
Station	Code Sandre	Richesse
RD10 Habitation Céron	08015101	31
Stade Grand'Rivière	08102101	24
St-Pierre (ancien pont)	08329101	35
AEP Vivé	08115101	24
Pont RD24 Sainte-Marie	08213101	23
Fond Baise	08322101	30
Gué de la Désirade	08521101	16
Pont RN1	08521102	17
Pont Belle Ile	08504101	11
Brasserie Lorraine	08533101	22
Amont confluence pirogue	08203101	19
Grand Galion	08225101	18
Pont de Chaines	08423101	17
Petit Bourg	08803101	13
Dormante	08824101	20
Palourde Lézarde	8501101	30
Séguineau	08205101	21
Aval bourg	08813102	10
Pont de Montgérald	08412102	28
Case Navire (bourg Schoelcher)	08302101	36

	Moyenne	22
Surveillance	Min	11
	Max	35
	Moyenne	24
Enquête	Moyenne Min	24 10

Les communautés de macroinvertébrés benthiques des stations du réseau de surveillance présentent en moyenne 22 taxons. La station St-Pierre (ancien pont) est celle qui présente le plus de taxons (35 taxons). La richesse minimale est retrouvée sur la station Pont Belle Ile sur la rivière Petite Lézarde.

Les communautés de macroinvertébrés benthiques des stations du réseau d'enquête sont en moyenne légèrement plus riches que celles du réseau de surveillannce (en moyenne 24 taxons).

Tous réseaux confondus, la richesse maximale est retrouvée sur la station Case Navire (bourg Schoelcher) (rivière Case Navire) et la richesse minimale sur la station Aval bourg (rivière Pilote, en aval du bourg Rivière Pilote).



3.3.3. Structure du peuplement

La répartition de l'abondance des groupes taxonomiques (figure suivante) révèle 5 types de stations :

- celles dominées par les mollusques : Pont RD24 Sainte-Marie, Gué de la Désirade, Pont RN1, Pont de Chaines, Pont Belle Ile ;
- celles dominées par les éphéméroptères : Petit Bourg, Grand Galion, Palourde Lézarde ;
- celle dominée par les trichoptères : Stade Grand'Rivière ;
- celle dominée par les diptères : Brasserie Lorraine ;
- et celle dominée par les oligochètes : St-Pierre (ancien pont).

Figure 3. Répartition de l'abondance entre les grands groupes taxonomiques pour chaque site du réseau de contrôle et de surveillance au carême 2010.

Le reste des stations présente un peuplement plus équilibré. Les lépidoptères, odonates, coléoptères et hétéroptères sont les groupes les moins représentés (<5%). Les coléoptères sont toutefois présents en proportion non négligeable sur la station Palourde Lézarde (10%).

Tableau 11. Taxon dominant sur chaque station du réseau de contrôle et surveillance au carême 2010.

Station	Taxon dominant
RD10 Habitation Céron	Leptohyphes sp. (insecte, ordre des Ephéméroptères)
Stade Grand'Rivière	Smicridea sp. (insecte, ordre des Trichoptères)
St-Pierre (ancien pont)	Oligochètes (vers)
AEP Vivé	Thiaridae (mollusque gastéropode)
Pont RD24 Sainte-Marie	Thiaridae (mollusque gastéropode)
Fond Baise	Thiaridae (mollusque gastéropode)
Gué de la Désirade	Thiaridae (mollusque gastéropode)
Pont RN1	Thiaridae (mollusque gastéropode)
Pont Belle Ile	Thiaridae (mollusque gastéropode)
Brasserie Lorraine	Psychodidae (diptère)
Amont confluence pirogue	Americabeatis sp. (insecte, ordre des Ephéméroptères)
Grand Galion	Americabeatis sp. (insecte, ordre des Ephéméroptères)
Pont de Chaines	Thiaridae (mollusque gastéropode)
Petit Bourg	Caenis femina(insecte, ordre des Ephéméroptères)
Dormante	Thiaridae (mollusque gastéropode)
Palourde Lézarde	Tricorythodes griseus (insecte, ordre des Ephéméroptères)
Séguineau	Thiaridae (mollusque gastéropode)
Aval bourg	Polychètes (vers)
Pont de Montgérald	Hydrobiidae (mollusque gastéropode)
Case Navire (bourg Schoelcher)	Thiaridae (mollusque gastéropode)

C'est le taxon des Thiaridae (mollusque) qui domine dans le plus grand nombre de stations du réseau (10 stations sur 20 au total). Concernant les autres stations, 5 sont dominées par différents taxons d'éphéméroptères, une est dominée par le trichoptère *Smicridea sp.* (Hydropsychidae) (station Stade Grand'Rivière) et une autre est dominée par les diptères Psychodidae (station Brasserie Lorraine). Pour finir, deux stations ont leurs communautés dominées par des vers, des oligochètes en ce qui concerne St-Pierre (ancien pont), et des polychètes en ce qui concerne Aval bourg.

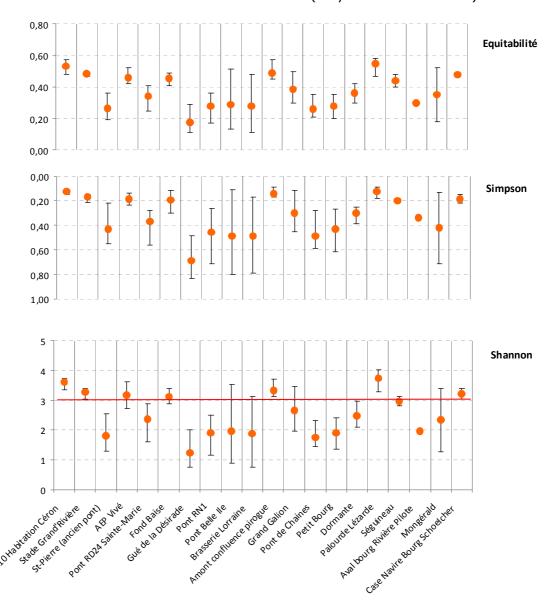
3.3.4. Indices de diversité

Les résultats macroinvertébrés benthiques sont analysés par une série d'indices structuraux que sont :

- l'indice de **Shannon** pour l'évaluation de la diversité en espèces. Une valeur >3 indique un peuplement bien diversifié ;
- l'indice de Simpson pour l'évaluation du niveau de dominance entre les taxons. Une valeur égale à 0 indique qu'il n'y a pas de dominance du peuplement par un taxon alors qu'une valeur égale à 1 révèle qu'un taxon est majoritaire dans le peuplement (d'où l'échelle inversée pour la représentation graphique des résultats);
- l'indice d'Equitabilité pour l'évaluation de l'équilibre dans la répartition des taxons.
 E varie de 0 (une espèce représentant la totalité des captures) à 1 (équi-répartition des espèces). Les valeurs de l'équitabilité renseignent donc sur l'homogénéité des captures et l'équilibre du peuplement.

Tableau 12. Valeurs des différents indices structuraux calculés pour les sites du réseau de contrôle et surveillance de la Martinique sur la base des données de carême 2010.

Station	Code Sandre	Shannon	Simpson	Equitabilité
RD10 Habitation Céron	08015101	3,71	0,11	0,57
Stade Grand'Rivière	08102101	3,03	0,21	0,47
St-Pierre (ancien pont)	08329101	1,99	0,49	0,31
AEP Vivé	08115101	2,72	0,24	0,42
Pont RD24 Sainte-Marie	08213101	1,61	0,56	0,25
Fond Baise	08322101	3,15	0,20	0,48
Gué de la Désirade	08521101	0,74	0,83	0,11
Pont RN1	08521102	1,59	0,54	0,24
Pont Belle Ile	08504101	1,97	0,39	0,30
Brasserie Lorraine	08533101	3,11	0,17	0,48
Amont confluence pirogue	08203101	3,71	0,09	0,57
Grand Galion	08225101	1,97	0,45	0,30
Pont de Chaines	08423101	2,31	0,28	0,35
Petit Bourg	08803101	1,64	0,54	0,25
Dormante	08824101	2,54	0,27	0,39
Palourde Lézarde	8501101	3,79	0,11	0,58
Séguineau	08205101	3,11	0,19	0,48
Aval bourg Rivière Pilote	08813102	1,97	0,34	0,30
Mongérald	08412102	3,41	0,13	0,52
Case Navire Bourg Schoelcher	08302101	3,03	0,22	0,47


La compilation des trois indices structuraux classe en meilleure position les stations Palourde Lézarde, RD10 Habitation Céron et Amont confluence pirogue. Toutes trois présentent un indice de Shannon supérieur à 3.70, un indice de Simpson inférieur ou égal à 0.11 et un indice d'équitabilité supérieur à 0.50. Palourde (rivière Lézarde) était déjà en 2009 une des stations les mieux classées. Les peuplements aux deux autres stations étaient déjà considérés comme diversifiées et équilibrés en 2009. Six autres stations présentent des peuplements diversifiés et relativement équilibrés. Il s'agit de Stade Grand'Rivière, Fond Baise, Brasserie Lorraine, Séguineau, Mongérald et Case Navire Bourg Schoelcher.

Les sites mal classés en 2010 du point de vue des indices structuraux sont au nombre de neuf. Il s'agit de St-Pierre (ancien pont), AEP Vivé, Pont RD24 Sainte-Marie, Gué de la Désirade, Pont RN1, Pont Belle Ile, Grand Galion, Pont de Chaines, Petit Bourg, Dormante et Aval bourg Rivière Pilote. La station présentant les résultats les plus pénalisants est de loin la station Gué de la Désirade sur la rivière Lézarde.

On peut noter une nette amélioration des résultats sur les stations Brasserie Lorraine et Mongérald. Mongérald était en 2009 la station la moins bien classée de tout le réseau. Elle affiche cette année un indice de Shannon de 3,41 et un indice de Simpson de 0,13. Brasserie Lorraine présentait elle un indice de Shannon de 2,7 et un indice de Simpson de 0,25.

Des trois stations de surveillance (Séguineau, Aval bourg Rivière Pilote, Mongérald et Case Navire Bourg Schoelcher), seule Aval bourg Rivière Pilote présente clairement de mauvais résultats (peuplement peu diversifié et déséquilibré).

Figure 4. Valeurs des différents indices structuraux calculés sur les sites du réseau de contrôle et suveillance entre 2007 et 2010 (moyenne ± Min et Max).

L'examen combiné des résultats des trois indices structuraux pour la moyenne 2007-2010 (cf figure ci-dessus) révèle que les sites de meilleure qualité du réseau sont Palourde Lézarde, RD10 Habitation Céron, Amont confluence pirogue et Stade Grand'Rivière. Elles ont toutes les trois un indice de Shannon supérieur à 3, un indice de Simpson inférieur à 0,2 et une équitabilité autour de 0,5 sur la période 2007-2010 (faible variabilité).

A l'inverse, les stations de moins bonne qualité sont Gué de la Désirade, St-Pierre (ancien pont), Pont RN1, Pont de Chaines, Petit Bourg, Dormante et Aval bourg.

Les stations Pont Belle Ile, Brasserie Lorraine et Mongérald sont aussi de moins bonne qualité mais sont en plus les moins stables de toutes sur la période 2007-2010.

3.3.5. Synthèse Invertébrés benthiques

Les indices structuraux (Shannon, Simpson, Equitabilité) recueillis pour les quatre années de suivi des stations de surveillance permettent de mettre en avant les stations :

- les mieux classées: Palourde sur la rivière Lézarde (située en zone centre, en amont sur la rivière Lézarde, et qui est également une station de référence), RD10 Habitation Céron sur la rivière de l'Anse Céron et Amont confluence Pirogue sur la rivière du Lorrain (toutes deux situées en zone nord où les pressions anthropiques sont faibes).
- les moins bien classées : Gué de la Désirade sur la rivière Lézarde, Saint-Pierre ancien pont sur la Roxelane, Pont RN1 sur la rivière Lézarde, Pont de Chaine sur la rivière Madame, Petit Bourg sur la rivière Coulisse, Dormante sur la rivière Oman, et Aval bourg Rivière Pilote sur la rivière Pilote. Gué de la Désirade, Pont RN1 et Dormante subissent une influence à dominante agricole, avec des plantations de bananes à proximité. Pont de Chaines, St-Pierre (ancien pont) et Petit Bourg, situées en zone urbaine, subissent quant à elles une pollution qui s'associe plutôt à des rejets d'eaux usées.

Mongérald, Belle-Ile et brasserie Lorraine sont des stations instables, mais le plus souvent parmi les moins bien classées, Mongérald étant située en zone urbaine et les deux autres en zone agricole.

Il faut rappeler qu'on ne peut cependant pas déduire la qualité du milieu à la simple vue des indices structuraux, de l'abondance totale ou encore de la richesse taxonomique, et ce pour aucune des stations (quelles soient référencées comme peu impactées ou non) la polluosensibilité et les preferenda écologiques des différents taxons n'étant pas (encore) connus à ce jour.

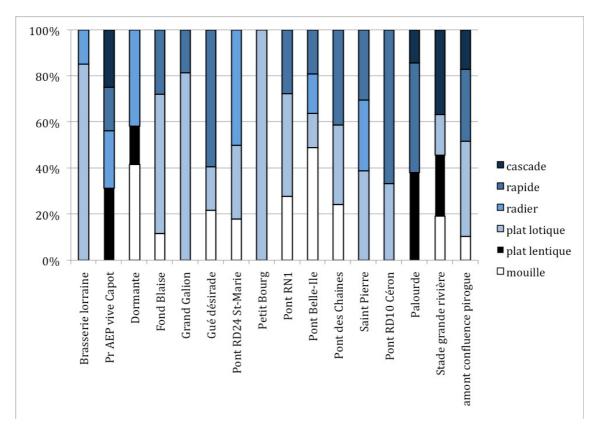
3.4. Etude de l'ichtyofaune et des macrocrustacés

A noter que du fait de son caractère saumâtre, la station d'enquête Aval Bourg Rivière Pilote n'a pas été échantillonnée à l'électricité – mais au filet multimailles – et non selon une logique habitationnelle. Par conséquent les résultats obtenus sur cette station ne pouvant être comparés avec ceux des autres stations, celle-ci fait l'objet d'un paragraphe distinct.

3.4.1. L'habitat

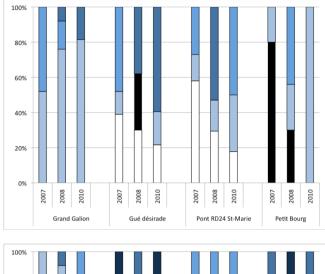
3.4.1.1. Réseau de surveillance

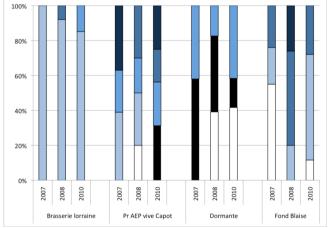
Les faciès échantillonnés sur chaque station de surveillance, ainsi que les proportions en surface, sont représentés sur la figure 5.

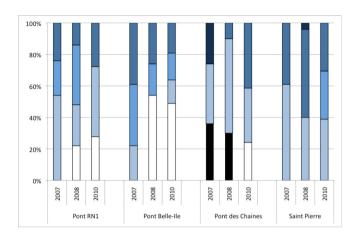

Les stations présentent une diversité d'échantillonnage moyenne. La moitié (50% - 8 stations) ont été couvertes sur 3 faciès. Quatre stations ont été couvertes sur 4 faciès (25%), trois sur deux facies (18%) et une sur un faciès (6%).

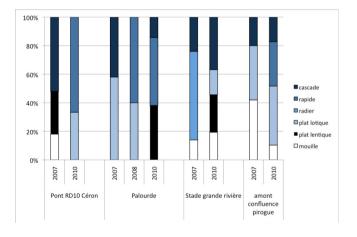
On observe cette année une hydrologie à dominance lente (mouille, plat lentique, plat lotique - 57%). Le facies le plus souvent échantillonné est le plat lotique (34%). Le

facies rapide est ensuite le plus fréquent (25%), suivi de la mouille (15%), du radier (10%) du plat lentique (8%) et de la cascade (8%).


En 2007 l'intégralité – et en 2008 une majorité de ces stations (11 points sur 16) – avaient déjà été échantillonnées. Cela permet une comparaison de l'évolution de la représentativité (Figure 6).




Figure 5. Répartition des faciès échantillonnés sur les stations de surveillance- Année 2010


Celle ci, en 2010 est en progression par rapport aux deux autres années de comparaison. La proportion de stations échantillonnées sur 4 facies est passée de 0% en 2007 à 15% en 2008 et 25% en 2010. La couverture de stations sur 3 facies est stable entre 2007 et 2008 (63 et 69%) et baisse en 2010 (50%). La part de stations échantillonnées sur seulement 2 facies a baissé entre 2007 et 2008 (31 et 15%) mais reste stable en 2010 (18%).

Les années 2007 et 2008 avaient déjà mis en évidence une hydrologie de type majoritaire lent (60% en 2007 et 58% en 2008). Le plat lotique est toujours le facies le plus fréquemment échantillonné (33% en 2007 et 2008). A quelques points près, les proportions des facies échantillonnées sont très semblables entre 2008 et 2010. En 2008 le plat lotique représente 33%, les rapides 28%, la mouille 15%, le radier 12% le plat lentique 10% et les cascades 2%. A l'inverse, on observe des différences avec 2007, année lors de laquelle les radiers et cascades étaient plus fréquents à la défaveur des rapides.

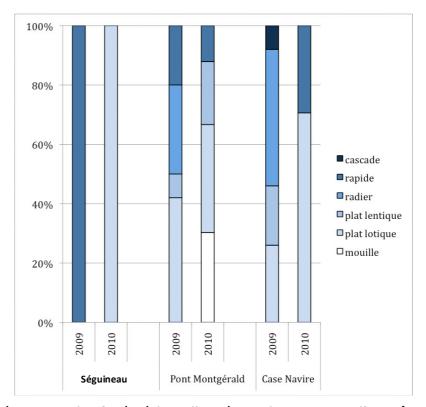


Figure 6. Evolution des faciès échantillonnés en 2007, 2008 et 2010 sur les stations de surveillance. (Les stations Pont RD10 Céron, Stade Grande rivière et Amont Confluence Pirogue n'ont pas été échantillonnées en 2008).

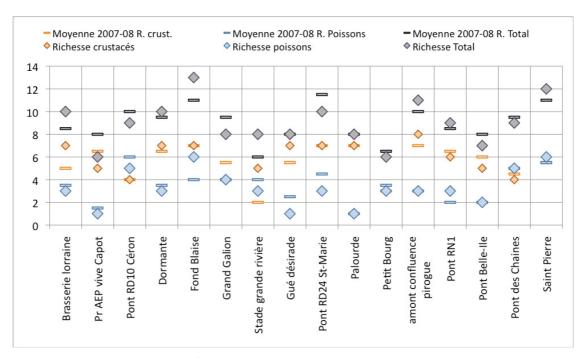
Rapport de synthèse Page 36/135

3.4.1.2. Réseau d'enquête

Les quatre stations d'enquête en 2010, présentent des compositions en facies distinctes (Figure 7). La station Pont Montgérald affiche un milieu échantillonné diversifié avec 4 facies différents à majorité lent. A Case Navire (Bourg Schoelcher) deux facies seulement ont été échantillonnés en 2010. A l'opposé la station Séguineau extrêmement homogène, n'a pu être échantillonnée que sur un unique facies de type plat lotique.

Figure 7. Répartition des faciès échantillonnés sur les stations d'enquêtes en 2009 et 2010

De manière générale, entre 2009 et 2010, on observe des facies plus lent qu'en 2010. Séguineau passe d'entièrement rapide à entièrement plat lotique. Pont Montgérald, qui possédait en 2009 une répartition équitable entre facies lents et rapides, est à majorité lente en 2010. A Case Navire (Bourg Schoelcher), les facies rapides ont disparus ce qui a provoqué une homogénéisation de la station.


3.4.2. Richesse et composition spécifique

3.4.2.1. Réseau de surveillance

La richesse totale en espèces de crustacés et poissons des sites de référence pour l'année 2010 oscille entre 6 et 13 espèces (Figure 8). La plus importante richesse totale concerne la station nord Caraïbes de FOND BAISE. La plus faible richesse totale se retrouve à la station PETIT BOURG.

FOND BAISE et SAINT PIERRE (ANCIEN PONT), les stations les plus riches faisaient déjà partie des points à grandes diversités en 2007-2008. De même PETIT BOURG était déjà en 2007-2008 la station affichant la plus faible richesse.

Figure 8. Richesse en espèces des stations de surveillance en 2010 (losanges) et Richesses moyennes en 2007-2008 (Traits). Pour les stations Pont RD10 Céron, Stade Grande rivière et Amont Confluence Pirogue les traits représentent les richesses de 2008 ; l'échantillonnage n'ayant pas eu lieu en 2007.

L'examen séparé des richesses de poissons et de crustacés révèle que la plus forte richesse en crustacés (8 espèces) est retrouvée à la station AMONT CONFLUENCE PIROGUE, alors que la plus faible richesse (3 espèces) touche la station de la PETIT BOURG. Quant aux poissons, moins bien représentés que les crustacés, ils sont en richesse maximale (6 espèces) aux stations FOND BAISE ET SAINT PIERRE (ANCIEN PONT) et en richesse minimale (1 espèce) aux stations de PR AEP VIVE CAPOT, de GUE DE LA DESIRADE et de PALOURDE LEZARDE.

Par rapport aux moyennes des années 2007-2008, les valeurs de richesses totales en 2010 présentent une augmentation moyenne de 0,2. Dans les faits, 8 stations affichent une richesse plus élevée en 2010 (entre 0,5 et 2 taxons de plus), 6 stations une richesse totale plus faible (entre 0,5 et 1,5 taxons de moins) et 2 une richesse stable.

Dans l'ensemble, la richesse en poissons est stable entre 2010 et les années 2007-2008. Cinq stations présentent cette année une diversité égale à la moyenne des années précédentes, quatre une richesse supérieure (allant jusqu'à 2 taxons pour FOND BAISE) et sept une richesse inférieurs (jusqu'à 1,5 taxons).

La diversité en macrocrustacés de 2010 est légèrement supérieure (0,2) à la moyenne de 2007-2008. Six stations présentent un gain de richesse et la station STADE GRAND RIVIERE est celle affichant la plus forte progression, soit 3 taxons. Cinq stations ont une diversité égale à la moyenne des pêches précédentes, et autant présentent une baisse pouvant atteindre 1,5 taxons pour GRAND GALION.

En 2010 la majorité des stations (11 points sur 16), possèdent des richesses en macro crustacés supérieures à celles en poissons. Cette supériorité est en moyenne égale à 3 taxons. Trois stations (GRAND GALION, PETIT BOURG et SAINT PIERRE) présentent des richesses des deux groupes égales et seulement deux points (PONT RD10 CERON et PONT DE CHAINES) permettent des captures en poissons plus riches qu'en crustacés. Ces

observations sont fortement comparables à celles que l'on peut faire sur les résultats 2007-2008.

L'analyse conjointe de la richesse et de la composition spécifique permet une analyse plus fine (Tableau 13).

FOND BAISE, la station la plus riche, est la seule à avoir permis la capture de *Centropomus sp.* SAINT PIERRE (ANCIEN PONT), station à la richesse également importante, est la seule à avoir permis la capture de *Dormitator maculatus*. Ces deux stations ont également permis la capture, avec la station PONT RD10 CERON, de *Anguilla rostrata*. *Awaous banana*, un autre taxon rare, n'a été capturé qu'à FOND BAISE et à PONT RD10 CERON.

Ainsi les richesses élevées de FOND BLAISE et SAINT PIERRE (ANCIEN PONT), sont en partie dues à la capture d'espèces de poissons marginales. Ce résultat semble moins marqué pour les espèces de macrocrustacées. En effet, *Atya innocous*, observée à seulement trois stations, a été capturée à FOND BAISE.

Seule l'espèce de poissons *Sicydium sp.*, est ubiquiste de l'ensemble des stations de surveillance 2010. La fréquence des autres espèces de poissons ne dépasse jamais 38% (soit des captures à 6 stations sur 16). Aucune espèce de crustacés n'est rencontrée à toutes les stations. Citons cependant *Xiphocaris elongata* présente au trois quarts des points de prélèvement et *Atya scabra* observée à 69% des stations.

Poecilia reticulata, est la seule espèce introduite rencontrée lors de cette campagne. Bien que souvent en faibles effectifs, elle est cependant présente à 5 stations. Remarquons que pour la plupart des points abritant cette espèce, la richesse piscicole est faible (entre 2 et 4).

A noter qu'aucune Cherax quadricarinatus n'a été observée sur le réseau de surveillance.

Tableau 13. Composition en espèces de poissons et macrocrustacés des stations de surveillance - Année 2010.

Famille de custacé	és Espèces	Brasserie Lorraine	Pr AEP-Vivé Capot	RD10 Habitation Céron	Dormante	Fond Baise	Grand Galion	Stade Grand'Rivière	Gué de la Désirade	Pont RD24 St-Marie	Palourde	Petit Bourg	Amont confluence Pirogue	Pont RN1	Pont Belle-Ile	Pont de Chaîne	St-Pierre (ancien pont)	Fréquence
	Atya innocous	-				7					180		1	100000				19
	Atya scabra	2	256		4	1			91	1062	48		5	81	4		8	69
Atyidae	Atya sp.	39	85		29	23	36		279		736		167	347	143		80	69
	Micratya poeyi		24		17	36		3	35	1	24		18	37		5		63
	Potimirim sp.	7						17	5	10								25
	Macrobrachium acanthurus	37			12		21		167	600000		389		210	164		02	44
	Macrobrachium carcinus			12/1-1	16		114		50000	411			10000	2-1-1-1-1	332		1	31
Palaemonidae	Macrobrachium crenulatum		1977-12723	7				4	12	1	10000000		2	60000		hananga	1	38
Palaemonidae	Macrobrachium faustinum		106	84		41		20		1	170		5	7		272	377	63
	Macrobrachium heterochirus	1	32	69		23		53			23		19			1	162	56
	Macrobrachium sp.	55		283	9							1						25
Xiphocaridae	Xiphocaris elongata	37			212	9	7		42	253	17	180	10	121	250	4		75
Famille de poisson		Brasserie Lorraine	Pr AEP-Vivé Capot	RD10 Habitation Céron	Dormante	Fond Baise	Grand Galion	Stade Grand'Rivière	Gué de la Désirade	Pont RD24 St-Marie	Palourde	Petit Bourg	Amont confluence Pirogue	Pont RN1	Pont Belle-Ile	Pont de Chaîne	St-Pierre (ancien pont)	Fréquence
Mugilidae	Agonostomus monticola			9		24		1					4			1	8	38
Anguilidae	Anguilla rostrata			6		1	_							_			2	19
	Eleotris perniger	1			2		3					13		2		1		38
Eleotridae	Gobiomorus dormitor				4		1			1				2		7	1	38
	Dormitator maculatus																2	6
Gobiesocidae	Gobiesox nudus			12		5	_	2					1			2	6	38
Poecilidae	Poecilia reticulata	1					5			2		1			24			31
Gobiidae	Awaous banana Sicydium sp.	3	406	1 86	7	1 292	1	227	9	144	19	1	72	1	4	1	582	13
Centropomidae	Centropomus sp.					3												6
	Richesse Crustacés	7	5	4	7	7	4	5	7	7	7	3	8	6	5	4	6	
	Richesse Poissons	′3	1	5	3	6	4	3	1	3	1	3	3	3	2	5	6	

Rapport de synthèse Page 40/135

3.4.2.2. Réseau d'enquête

En 2010, les richesses spécifiques totales des trois stations d'enquête sont comprises entre 8 et 11, soit une baisse de deux points par rapport à 2009 pour le maximum et le minimum (Figure 9).

SEGUINEAU possède toujours la richesse en crustacés la plus élevée des trois stations d'enquête 2010. En revanche 3 taxons de poissons disparaissent par rapport à 2009 et sa richesse piscicole devient la plus faible.

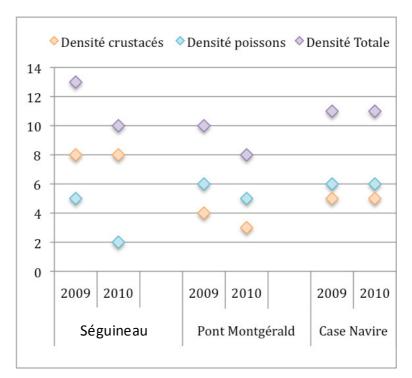


Figure 9. Richesse en espèces des stations d'enquêtes en 2009 et 2010

Contrairement à SEGUINEAU, PONT MONTGERALD et CASE NAVIRE (BOURG SCHOELCHER) possèdent une richesse en poissons supérieure à celle des crustacés.

PONT MONTGERALD possède la richesse en crustacés la plus faible avec 3 taxons en 2010. La baisse de richesse de ce groupe accroit la différence de richesse totale avec les autres stations. Comme la richesse en poissons diminue également à cette station en 2010 on y observe au final la richesse la plus faible des stations d'enquête.

CASE NAVIRE (BOURG SCHOELCHER) affiche une forte richesse piscicole et une diversité moyenne en crustacés. Les valeurs de 2010 sont équivalentes à celles de 2009. Cette station est intermédiaire aux deux autres.

A la station SEGUINEAU, la forte richesse en crustacés est mise en évidence dans le tableau 14. Pratiquement toutes les espèces de la famille des *Palaemonidae* (Toutes sauf *Macrobrachium acanthurus*) ont été observées à cette station. Le taxon majoritaire est *M. faustinium.* Notons que contrairement à 2009, l'espèce exogène, *M. rosenbergii* n'a pas été capturée à cette station.

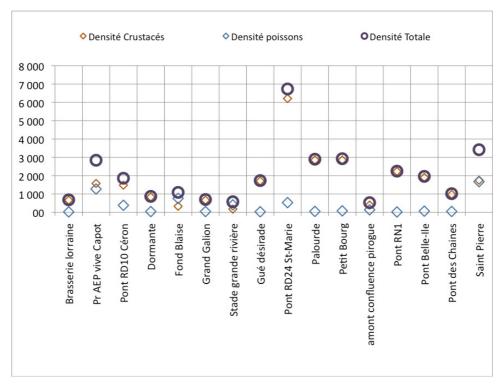
A PONT MONTGERALD, deux taxons de *Palaemonidae* ont été capturés et *M. faustinium* domine les crustacés en abondance. Pour les poissons, 5 espèces appartenant à 3 familles différentes ont été observées. *G. dormitator* une espèce pourtant peu commune, domine la communauté piscicole.

RAPPORT FINAL Page 41/135

CASE NAVIRE (BOURG SCHOELCHER) abrite trois familles de Crustacés. Contrairement aux deux autres stations c'est *Xiphocaris elongata* qui domine la partie invertébrée de la faune aquatique. Six familles de poissons et autant d'espèces composent la part piscicole de la communauté. *Scycidum sp.* y est le taxon majoritaire. Un individu de *Poecilia reticulata* a été capturé, c'est le seul individu d'une espèce exogène qui ait été trouvé aux stations d'enquête.

Tableau 14. Composition en espèces de poissons et macrocrustacés des stations d'enquête – Année 2010.

Famille de crustacés	Espèces	Case Navire	Pont Montgérald	Séguineau
	Atya innocous	3		
Atyidae	Atya scabra			7
Atylude	Atya sp.	47		93
	Micratya poeyi	22		
	Macrobrachium acanthurus		31	
	Macrobrachium carcinus			5
Palaemonidae	Macrobrachium crenulatum			4
	Macrobrachium faustinum	59	98	163
	Macrobrachium heterochirus			9
	Macrobrachium sp.			94
Xiphocaridae	Xiphocaris elongata	67	18	1
-				
Famille de poissons	Espèces	CAN008	MON012	LOR010
Mugilidae	Agonostomus monticola	13	2	
Eleotridae	Eleotris perniger		3	4
пении	Gobiomorus dormitator	25	71	
Gobiesocidae	Gobiesox nudus	3		
Poecilidae	Poecilia reticulata	1		
Gobiidae	Awaous banana		4	
Gobildae	Sicydium sp.	46	51	94
Centropomidae	Centropomus sp.	1		
	Richesse Crustacés	5	3	8
	Richesse Poissons	6	5	2
	Richesse Folssons			

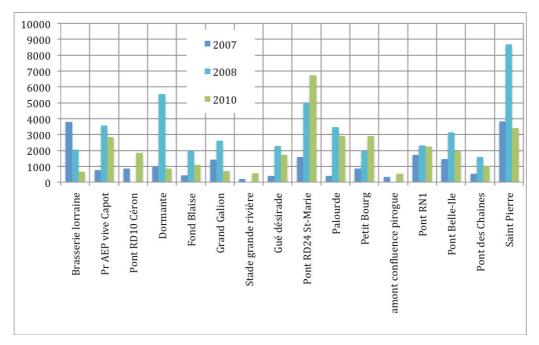

RAPPORT FINAL Page 42/135

3.4.3. Densité

3.4.3.1. Réseau de surveillance

Les densités sont variables entre les différentes stations de surveillance en 2010 (Figure 10). En moyenne la densité totale est de 2002 ind./ 100m^2 . Les densités les plus faibles (< 1000 ind./ 100 m^2) sont observées aux stations (par ordre croissant) : AMONT CONFLUENCE PIROGUE, STADE GRAND RIVIERE, BRASSERIE LORRAINE, GRAND GALION et DORMANTE. Les deux premières présentent une balance poissons-macrocrustacés plus ou moins équilibré tandis qu'aux 3 dernières les crustacés sont clairement majoritaires. La station PONT RD24 ST MARIE domine largement les densité avec plus de 6000 ind./ 100 m^2 . Celle ci est essentiellement expliquée par une très forte présence de macrocrustacés. SAINT PIERRE (ANCIEN PONT) suit avec près de 3500 ind./ 100 m^2 . Les autres stations présentent des densités totales entre $1000\text{ et }3000\text{ ind.}/100\text{ m}^2$.

FOND BAISE et STADE GRAND RIVIERE sont les seules stations présentant des densités de poissons supérieures à celles des macrocrustacés. Les stations de SAINT PIERRE (ANCIEN PONT) et PR AEP VIVE CAPOT ont cependant des densités des deux groupes proches. Ce sont également les deux stations affichant les densités de poissons les plus élevées. Pour toutes les autres stations les macrocrustacés sont clairement plus abondants. Les différences vont d'un facteur de 3 pour AMONT CONFLUENCE PIROGUE à 161 pour PONT RN1. Concernant cette dernière, il s'agit du point où la densité piscicole est la plus faible.


Figure 10. Densité en poissons, en crustacés et densité totale aux différents sites de surveillance en 2010

L'évolution des densités en 2007, 2008 et 2010 nous apporte de nouvelles informations (Figure 11). Les patterns y sont variés. Deux stations présentent une augmentation de la densité à chacune des pêches, PONT RD24 ST MARIE et PETIT BOURG. La station de BRASSERIE LORRAINE est la seule à présenter une baisse de sa densité régulière entre 2007 et 2010. DORMANTE, GRAND GALION et SAINT PIERRE (ANCIEN PONT), après un pic de densité en 2008,

RAPPORT FINAL Page 43/135

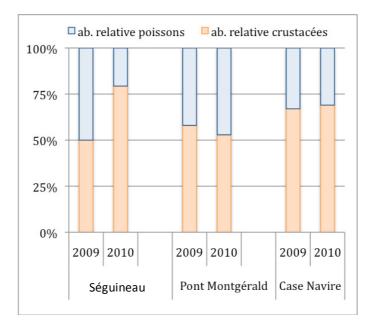
affichent en 2010 des densités plus faibles qu'en 2007. PONT RD10 CERON, STADE GRANDE RIVIERE et AMONT CONFLUENCE PIROGUE n'ont pas été échantillonnées en 2008 mais affichent des densités en 2010 plus grandes qu'en 2007. Les sept autres stations présentent un pattern similaire : une augmentation en 2008 puis une baisse de densité en 2010, celle ci restant pourtant supérieure à 2007.

Figure 11. Evolution des densités totales aux différentes stations de surveillance – 2007, 2008 et 2010.

3.4.3.2. Réseau d'enquête

Les densités totales d'individus (Figure 12) varient de 842 à 1975 individus pour 100m2.

Séguineau représente la valeur maximale de densité totale, tandis que Case Navire (Bourg Schoelcher) et Pont Montgérald s'égalent dans le minimum.


Séguineau montre une progression importante de sa densité en crustacés qui est multipliée par 2,5 entre 2009 et 2010. La densité de poissons est en revanche en baisse à cette station. Elle atteint pourtant la valeur maximum des trois stations d'enquête en 2010.

Pont Montgérald est le siège d'une baisse importante de densité. Les densités totales, en crustacés ou en poissons sont divisées par un facteur compris entre 2 et 2,5. La densité de crustacés la plus basse est observée à cette station d'enquête.

Case Navire (Bourg Schoelcher) présente également en 2010 des densités en baisse, cependant moins drastique qu'à Pont Montgérald. Entre 2009 et 2010, elles diminuent de facteurs compris entre 1,5 et 2. C'est à cette station d'enquête que la densité de poissons est la plus faible.

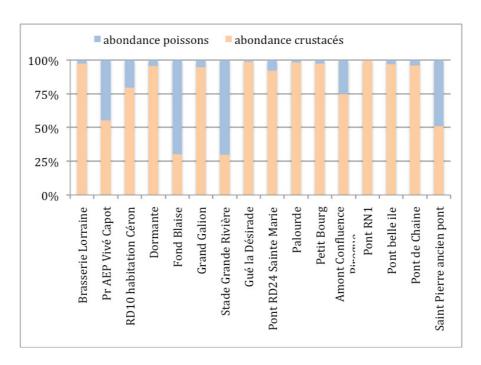
RAPPORT FINAL Page 44/135

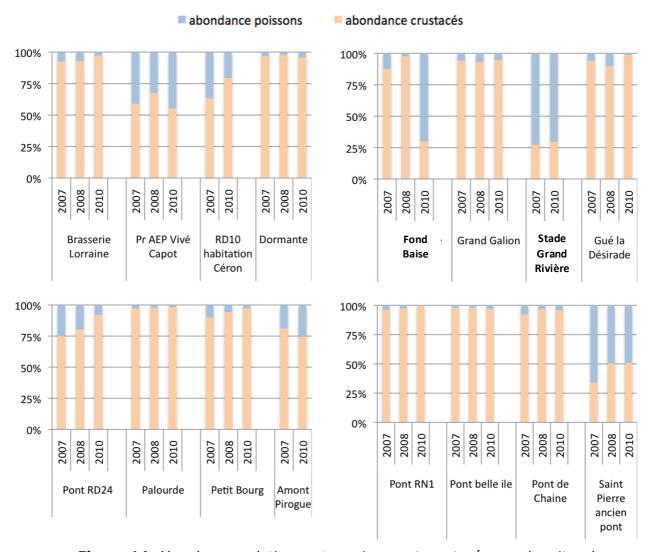
Figure 12. Abondances relatives en poissons et crustacés aux stations d'enquêtes en 2009 et 2010

3.4.4. Dominance crustacés/poissons

3.4.4.1. Réseau de surveillance

En 2010, 14 stations sur 16 présentent des abondances relatives en faveur des crustacés (Figure 13).

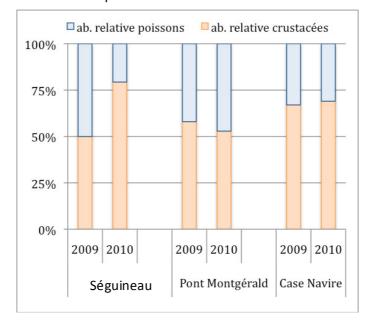



Figure 13. Abondances relatives en poissons et crustacés - Année 2010.

Ceux-ci représentent, en moyenne sur l'ensemble des stations, 81% du peuplement. FOND BAISE et STADE GRAND RIVIERE présentent les parts de poisson les plus importantes avec 70%.

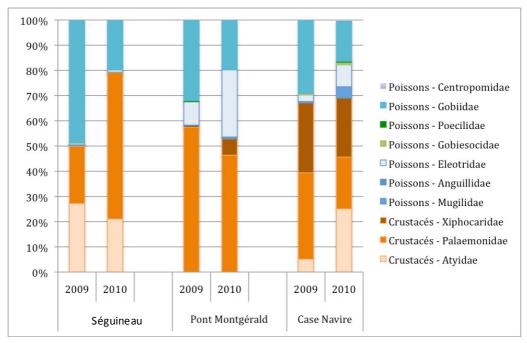
A PR AEP VIVE CAPOT et à SAINT PIERRE (ANCIEN PONT), la part des deux groupes est assez équilibrée (pour les poissons, respectivement 44 et 49%). AMONT CONFLUENCE PIROGUE et PONT RD10 CERON affichent une dominance modérée des macrocrustacés (respectivement 75 et 80%). Les dix autres stations sont par contre caractérisées par une supériorité des décapodes quasi hégémonique avec 95 à 99% de l'abondance.

Dans l'ensemble, les parts de captures de poissons et de crustacés restent constantes aux différentes stations (Figure 14). STADE GRAND RIVIERE est toujours dominée par les poissons (~70%). SAINT PIERRE (ANCIEN PONT) et PR AEP VIVE CAPOT restent toujours plus ou moins équilibrées entre les deux groupes. AMONT CONFLUENCE PIROGUE et PONT RD10 CERON permettent toujours une part de capture de poissons proche de 25%. Pour toutes les autres stations on observe une forte dominance des macrocrustacés. Le seul changement notable cette année concerne FOND BAISE. Les années 2007 et 2008 présentaient cette station comme largement dominée par les crustacées mais la pêche de 2010 a mis en évidence une forte présence piscicole (Plus de 70%).


Figure 14. Abondances relatives entre poissons et crustacés pour les sites de surveillance – Années 2007-2010.

3.4.4.2. Réseau d'enquête

A PONT MONTGERALD et à CASE NAVIRE (BOURG SCHOELCHER) les parts de crustacés et de poissons sont assez bien partagées avec un léger avantage pour les invertébrés (figure 15). De plus


RAPPORT FINAL Page 46/135

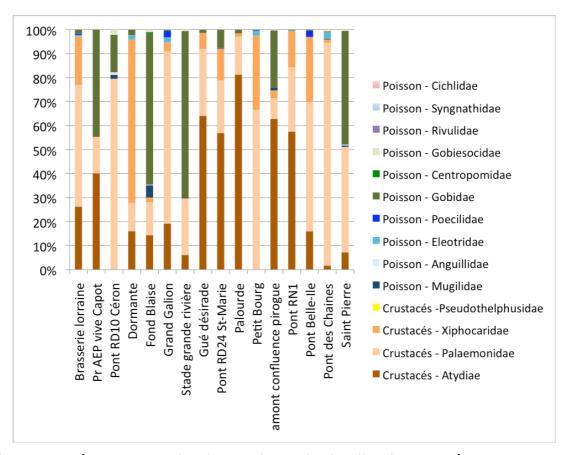
ces parts sont bien conservées entre 2009 et 2010. A SEGUINEAU les deux groupes étaient équitablement partagés en 2009 alors qu'en 2010 les crustacés sont largement avantagés et atteignent une représentativité de près de 80%.

Figure 15. Abondances relatives en poissons et crustacés aux stations d'enquêtes en 2009 et 2010

A SEGUINEAU, l'augmentation de la part de crustacés est attribuable à la famille des Palaemonidae qui participe à près de 60% de la communauté. L'autre famille de crustacés, les Atyidae, ainsi que la famille de poissons des Gobiidae montrent des proportions en baisse. (Figure 16). La première passe de 27% à 21% de la communauté tandis que la deuxième passe de 48% à 20%.

Figure 16. Répartition en abondance relative des familles de crustacés et poissons aux stations d'enquête en 2009 et 2010

A PONT MONTGERALD, les Palaemonidae restent majoritaires parmi les crustacés, mais les Xiphocaridae font leur apparition (6% de la communauté). Dans le groupe des poissons, bien que leur part globale reste stable entre 2009 et 2010, on observe une augmentation de la proportion des Eleotridae (9 à 26%) au détriment des Gobiidae (32 à 20%).



Comme en 2009, la composition en famille de CASE NAVIRE (BOURG SCHOELCHER) en 2010 semble bien équilibrée. La communauté de crustacés partage également les abondances entre les trois familles (Atydae 27% Palaemonidae 20% et Xiphocaridae 23%). Chez les poissons, les Gobiidae (16%) sont majoritaires, puis viennent les Eleotridae (9%).

3.4.5. Richesse et composition spécifique

3.4.5.1. Réseau de surveillance

La répartition des abondances relatives par famille de poissons et crustacés permet d'avoir une bonne image du peuplement en place sur les stations de surveillance (figure 17).

Figure 17. Répartition en abondance relative des familles de crustacés et poissons aux stations de surveillance – Années 2010

En 2010, la station la plus diversifiée en nombre de familles est celle de FOND BAISE avec 5 familles de poissons et 3 familles de crustacés. La station PR AEP VIVE CAPOT présente les plus faibles diversités avec 2 familles de crustacés et 1 de poisson.

En 2010, quatre familles se partagent successivement l'abondance maximum aux différents points d'échantillonnage. Six stations sont dominées par les *Palaemonidae*, cinq par les *Atyidae*, quatre par les *Gobiidae* et une par les *Xiphocaridae*.

L'analyse de l'évolution de la composition en familles aux différentes stations permet de préciser les observations faites dans le chapitre précédent (Figure 11).

C'est la famille des *Gobiidae* qui permet aux poissons de dominer à FOND BAISE et STADE GRAND RIVIERE. Les autres familles de poissons ne sont toujours que très minoritaires dans les captures. C'est également à cette même famille des *Gobiidae* que l'on doit la quasi égalité des

groupes poissons/macrocrustacés aux stations de PR AEP VIVE CAPOT et SAINT PIERRE (ANCIEN PONT). Les parts de crustacés à ces stations sont ensuite variables avec tantôt une dominance des *Palaemonidae*, tantôt une dominance des *Atyidae*.

Parmi les stations dominées par les macrocrustacés, PONT RD10 CERON est la seule n'en abritant qu'une seule famille, celle des *Palaemonidae*. PETIT BOURG, dominée par cette même famille en héberge deux espèces, et les *Xiphocaridae*, et les *Atyidae* sont totalement absents. Toutes les autres stations ont permis la capture d'invertébrés des trois familles. Les proportions de celles ci sont en revanche très variables d'un point à un autre. Ainsi, à l'opposé des poissons, la famille dominante de crustacés peut varier.

3.4.5.2. Réseau d'enquête

Voir § 3.4.4.2.

3.4.6. Potentiel reproducteur

3.4.6.1. Réseau de surveillance

Le potentiel reproducteur est représenté par la proportion en densité de crustacés grainés sur la densité totale de la population de crustacés. Ce potentiel est indicateur du rôle joué dans le recrutement par la portion concernée de la rivière et il s'avère donc intéressant de suivre son évolution (Figure 18).

Le potentiel reproducteur le plus important est retrouvé à la station AMONT CONFLUENCE PIROGUE où il atteint près de 34%, soit un chiffre très élevée. Les station de PALOURDE LEZARDE et STADE GRAND RIVIERE présente également des potentiels de reproduction hauts avec respectivement 27 et 19%.

On trouve ensuite quatre stations ayant des potentiels compris entre 10 et 15% (PR AEP VIVE CAPOT, PONT RD10 CERON, PONT DES CHAINES ET SAINT PIERRE). Les autres points affichent des valeurs inférieures à 10 %.

Deux stations n'ont permis aucune captures d'individus grainés, DORMANTE et GRAND GALION.

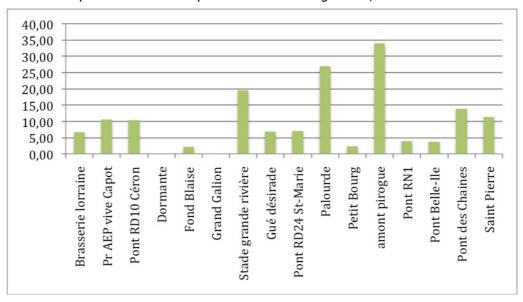


Figure 18. Potentiel reproducteur des crustacés aux stations de surveillance - Année 2010

ASCONT

RAPPORT FINAL Page 49/135

3.4.6.2. Réseau d'enquête

Le potentiel reproducteur est représenté par la proportion en densité de crustacés grainés sur la densité totale de la population de crustacés. Ce potentiel est indicateur du rôle joué dans le recrutement par la portion concernée de la rivière et il s'avère donc intéressant de suivre son évolution (Figure 19).

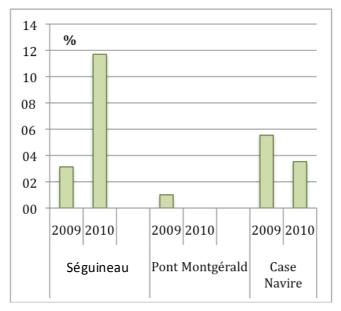


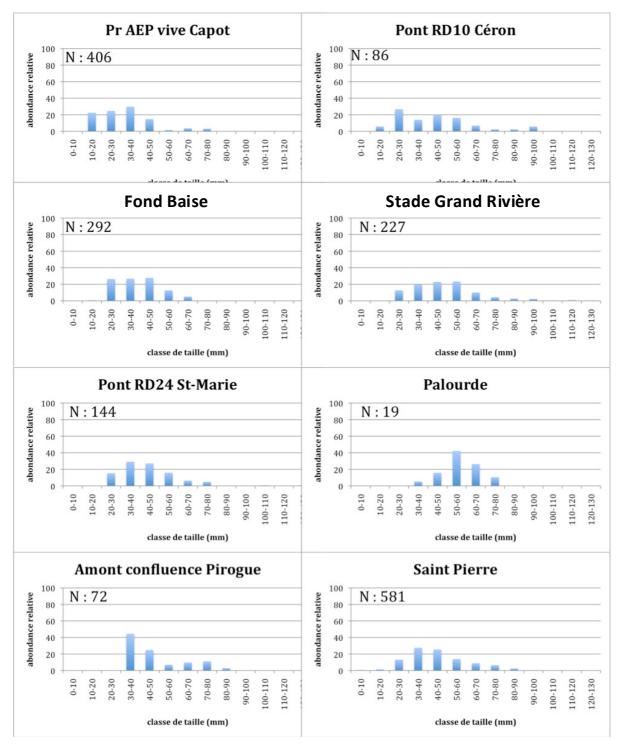
Figure 19. Potentiel reproducteur des crustacés aux stations d'enquêtes 2009 et 2010.

En 2010 SEGUINEAU montre le potentiel le plus haut parmi les trois stations d'enquête avec 11,7%. Il s'agit d'une augmentation conséquente vis à vis des résultats de l'année passée (3,1% en 2009). Pont Montgerald présentait en 2009 le potentiel de reproduction le plus faible. En 2010, aucun individu grainé n'a été observé. CASE NAVIRE (BOURG SCHOELCHER) est la plus stable des trois stations et présente des résultats intermédiaires aux deux autres. On observe cependant une baisse du potentiel de 5,5% en 2009 à 3,5 en 2010.

3.4.7. Répartition en classes de tailles

3.4.7.1. Réseau de surveillance

L'analyse de la structure en classe de taille a été menée pour les deux espèces les plus abondantes: *M. faustinium* et *Sicydium sp.* Les stations possédant moins de 10 individus pour un des taxons ne sont pas représentées. (Figures 20 et 21).


Chez Sicydium sp., les classes de taille vont de 10mm à 100mm. Les classes de tailles 30-40 et 40-50 sont les plus représentées et dominent alternativement en fonction des points d'échantillonnages. On observe des grandes variations entre les distributions des différentes stations.

Les individus les plus grands (90-100mm) sont trouvés aux stations STADE GRAND RIVIERE et PONT RD10 CERON. Les individus les plus petits ont été capturés aux stations PONT RD10 CERON et PR AEP VIVE CAPOT. PONT RD10 CERON est donc la station ayant permis la capture de la plus grande amplitude de taille de cette espèce.

Les distributions modales les plus harmonieuses sont observées à PONT RD24 ST MARIE, PALOURDE LEZARDE, et SAINT PIERRE (ANCIEN PONT). La reproduction de l'espèce s'effectuant seulement en saison des pluies (Septembre à janvier) (Atlas des poissons et crustacés d'eau douce de la Martinique Lim P. et al., 2002) et les poissons ayant une croissance continue, il

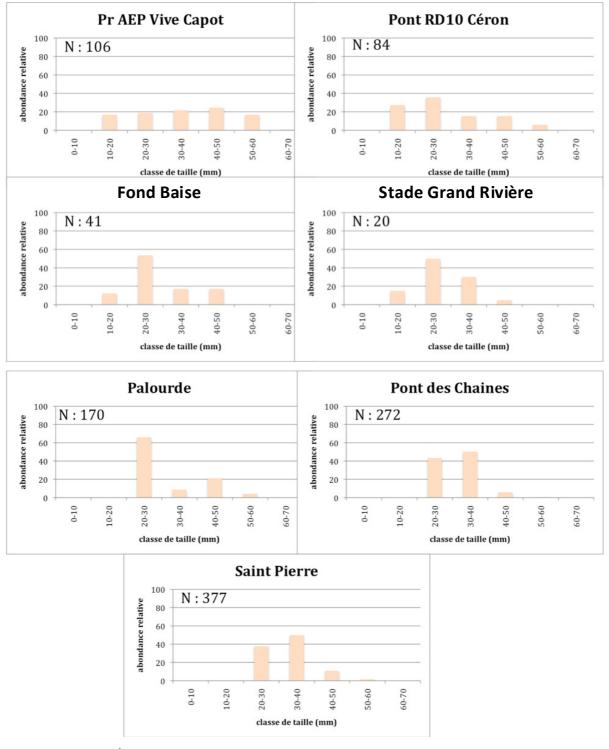
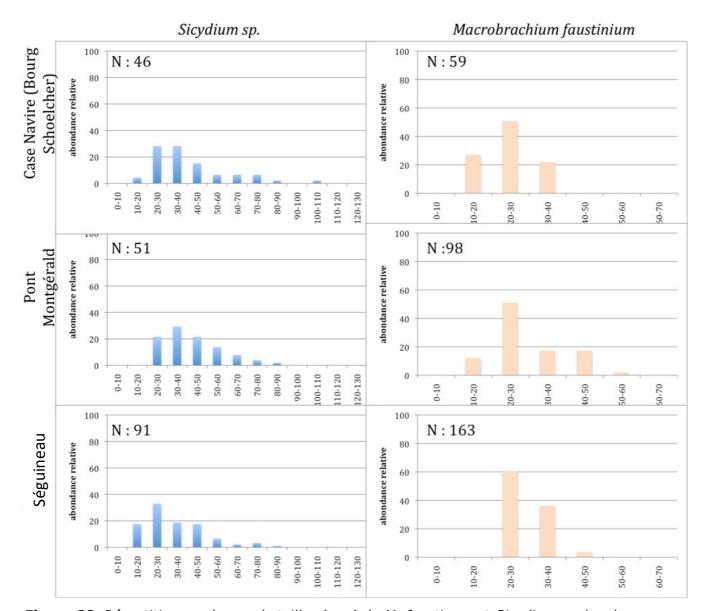

serait théoriquement possible d'observer des cohortes de classes d'âges différentes sur ces graphiques. Nous sommes donc soit en présence d'une unique classe d'âge, c'est à dire que tous les individus ont le même âge, soit les effectifs capturés sont insuffisants pour détecter différentes générations.

Figure 20. Répartition en classes de tailles (mm) de Sicydium sp aux stations de surveillance – Année 2010.

RAPPORT FINAL Page 51/135

Figure 21. Répartition en classes de tailles (mm) de *M. faustinium* aux stations de surveillance –Année 2010

Chez *M. faustinium*, la distribution dans les classes de taille s'étale de 10 à 60 mm. Comme pour *Sicydium sp.*, la station PONT RD10 CERON permet la capture de la plus grande amplitude de taille. PR AEP VIVE CAPOT est également dans ce cas. Les classes de tailles les plus fréquemment capturées sont 20-30 et 30-40.


Les stations Fond Baise, Stade Grand Riviere, Pont De Chaines et Saint Pierre (Ancien Pont) présentent une distribution avec un pic dans la classe de taille 20-30 ou 30-40 puis un étalement des captures sur les classes de tailles limitrophes. Les captures de Pont RD10 Ceron et PR AEP VIVE CAPOT sont réparties de façons plus homogènes entre les classes de tailles.

RAPPORT FINAL Page 52/135

3.4.7.2. Réseau d'enquête

L'analyse de la structure en classe de taille a été menée pour les deux espèces les plus abondantes: *M. faustinium* et *Sicydium sp.* (Figure 22).

Figure 22. Répartition en classes de tailles (mm) de *M. faustinum* et *Sicydium sp*, les deux espèces les mieux représentées sur les stations d'enquêtes –Année 2010.

Chez *M. faustinium*, la classe de taille de 20-30 mm est la plus abondante aux 3 stations. Elle approche 50% aux stations. Le potentiel reproducteur est représenté par la proportion en densité de crustacés grainés sur la densité totale de la population de crustacés. Ce potentiel est indicateur du rôle joué dans le recrutement par la portion concernée de la rivière et il s'avère donc intéressant de suivre son évolution (Figure 19). L'amplitude de répartition des tailles est différente aux trois stations. A CASE NAVIRE (BOURG SCHOELCHER) les individus se répartissent entre 10 et 40 mm. PONT DE MONTGERALD affiche la plus grande amplitude et les individus mesurent entre 10 et 60 mm. Des individus allant de 20 à 50 mm ont été capturés à SEGUINEAU.

Chez le poisson *Sicydium sp.*, les classes de taille dominantes sont différentes selon les stations. A CASE NAVIRE (BOURG SCHOELCHER) les classes 20-30 et 30-40 affichent des abondances relatives similaires. L'amplitude de répartition des individus est la plus large et

s'étale de 10 à 110 mm. La majorité des individus ont cependant des tailles comprises entre 20 et 60 mm.

A PONT MONTGERALD, la classe de taille majoritaire est celle de 30-40 mm. L'amplitude de répartition des tailles est la plus faible des 3 stations : de 20 à 90 mm. Cependant la répartition tronquée vers les petites tailles laisse supposer la présence de petits individus non capturés ici.

La population de SEGUINEAU présente un pic d'abondance pour la classe de taille de 20-30 mm et l'amplitude de répartition des individus va de 10 à 90 mm.

L'amplitude des classes de taille de *Sicydium sp.*, en particulier pour CASE NAVIRE (BOURG SCHOELCHER) et SEGUINEAU, suggère la présence de plus d'une classe d'âge. A noter cependant l'absence de modes marqués au niveau des plus grandes classes de taille.

3.4.8. Pêches au filet sur Aval bourg Rivière Pilote

Les résultats de la pêche sont synthétisés dans le tableau suivant.

Tableau 15. Données de pêche au filet pour les poissons à Aval bourg Rivière Pilote.

Famille	Espèce	Nombre d'individus	Biomasse (g)	Abondances numériques (%)	Abondances pondérales (%)	Rendements numériques (nb. Ind./100 m²)	Rendements pondéraux (g/100 m²)	Taille moyenne (mm)
Sciaenidae	Bairdiella sp.	5	250	6,3	55,7	11,1	555,6	167,0 ± 1,5
Engrolidae		70	129	88,6	28,7	155,6	286,7	62,6 ± 4,0
	Centropomus ensiferus	3	45	3,8	10,0	6,7	100,0	126,3 ± 1,5
Gerreidae	Diapterus auratus	1	25	1,3	5,6	2,2	55,6	140,0 ± 0
		79	449	100	100	175,6	997,8	

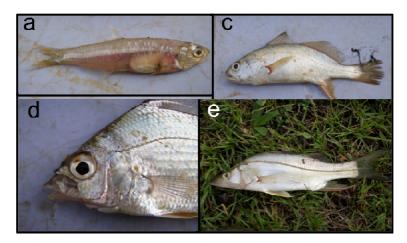
La pêche au filet a permis de capturer 79 individus pour une biomasse totale de 449 g.

La famille des Engrolidae est largement majoritaire dans les inventaires (près de 90% des effectifs). Il s'agit d'un groupe d'espèces pour la plupart marines mais dont certains membres pénètrent en eaux douces et saumâtres pour se nourrir de plancton. Les espèces de cette famille vivent en banc de très grande taille et il n'est pas étonnant de constater une abondance relative conséquente (Planquette *et al.*, 1996)¹.

Bairdiella ronchus est la deuxième espèce en abondance composant les captures. Elle affiche la biomasse totale la plus élevée (55,7% de l'abondance pondérale). Dans une étude sur l'espèce, Louis (1985)² signale la taille maximum des juvéniles au alentour de 17 cm. Les individus sont donc probablement des jeunes proches de la maturation sexuelle. L'espèce se nourrit d'anchois (Groupe des Engrolidae) et de crevettes (Garcia & Nieto, 1978)³.

Trois individus de l'espèce Centropomus ensiferus ont été capturés. L'espèce est signalée comme rarement présente en eaux douce. Les jeunes fréquentent cependant les zones

³ **GARCIA T. ET NIETO E.** – **1978** – Alimentacon de *Baridella ronchus* (Cuvier) (Pisces: Scianidae) en dos areas de la plataforma cubana. *Ciencas investigaciones Marinas*, Universidad de la Habana, *8 (38): 11-28*.


RAPPORT FINAL Page 54/135

¹ PLANQUETTE P., KEITH P. & LE BAIL P-Y. – **1996** - Atlas des poissons d'eau douce de Guyane (Tome 1). *Patrimoines naturels, vol. 22. IEGB – M.N.H.N., INRA, CSP, Min. Env., Paris 429p.*

² **Louis M. – 1985** – Reproduction et croissance de Bairdiella ronchus (Poisson Scianidae) dans les mangroves de Guadeloupe (Antille française). *Rev. Hydrobiol. Irop. 18 (1) : 61-72.*

inondables, les mangroves et les fossés d'irrigation. L'espèces pouvant atteindre, en Guyane, 35 cm, on peut supposer qu'il s'agit ici de jeunes (Keith *et al.*, 2000)⁴.

Diapterus auratus n'a été capturé qu'en un seul exemplaire de 13 cm pour 25 grammes environ, certains individus pouvant atteindre 34 cm pour 680 g (Cervigon, 1993)⁵. Pour cette espèce également, il semble s'agir d'un juvénile. L'espèce est définie comme marine et aucune donnée sur la migration des jeunes en eaux douce et/ou saumâtre n'a été trouvée.

Figure 23. Photo des espèces pêchées au filet à la station Aval bourg Rivière Pilote. a : Engrolidae ; c : *Bairdiella ronchus* ; d : *Diapterus auratus* ; e : *Centropomus ensiferus*

3.4.9. Synthèse poissons et macrocrustacés

3.4.9.1. Réseau de surveillance

Brasserie Lorraine est échantillonnée pour la troisième fois en 2010. Elle se compose cette année de deux facies à tendance lente, comme en 2007 et 2008. La richesse totale de la station (10 taxons) se situe dans la moyenne des stations de surveillance de cette année. Par rapport aux années 2007-2008 la richesse totale est en augmentation et le seul groupe des crustacés (7 taxons) peut l'expliquer. Ceux ci sont d'ailleurs beaucoup plus abondants que les poissons en 2010 d'où une densité plus élevée. Le groupe des poissons est légèrement moins riche (3 taxons) que la moyenne 2007-2008. Leur abondance et donc leur densité sont faibles. La densité générale de la station est en baisse continuelle depuis le début du 2007. Les macro crustacés dominent clairement le peuplement de la station (97%) comme durant les deux autres suivis. Les trois familles principales de crustacés sont présentes à la station. Les Palemonidae dominent mais les Atyidae et Xiphocaridae représentent toutefois des parts non négligeables des captures. Le potentiel de reproduction de la station (6,7%) bien qu'inférieur au maximum observé cette année reste habituel. La richesse de la station est en augmentation mais elle voit en parallèle sa densité diminuer à chaque échantillonnage. Il est nécessaire de continuer l'étude de cette station pour mieux appréhender l'évolution du site.

⁵ Cervigon, F. 1993. Los peces marinos de Venezuela. Vol. 2. Fundacion Cientifica Los Roques, Caracas, Venezuela. 497 p.

RAPPORT FINAL Page 55/135

 $^{^4}$ KEITH P., LE BAIL P-Y. & PLANQUETTE P. – 2000 - Atlas des poissons d'eau douce de Guyane (Tome 2, fascicule 1). Patrimoines naturels (M.N.H.N./S.P.N.), 43(I): 286p

Echantillonnée pour la troisième fois, **Dormante**, est une station composée à 50% de plats et 50% de radiers. Elle affiche en 2010 une richesse en crustacés (7 taxons) légèrement supérieure à la moyenne 2007-2008 et une richesse piscicole (3 taxons) légèrement inférieure. La densité totale de la station est parmi les plus petites des stations de surveillance de 2010 (867 ind./100m²) et on peut peut-être mettre ce résultat en relation avec le potentiel de reproduction nul observé ici. Les poissons sont néanmoins beaucoup moins abondants que les crustacés (différence d'un facteur 23) d'où une densité de ces derniers beaucoup plus importante. Ce pattern est observé depuis 2007. Les trois principales familles de crustacés composent cette part majoritaire de la communauté. Mais cas unique en 2010, les Xiphocaridae dominent les autres familles. **A cette station, on observe d'une part une richesse plus élevée et une part crustacé-poisson stable et d'autre part une densité faible en 2010 et un potentiel de reproduction nul. La poursuite du suivie de la station s'avère donc nécessaire pour mieux saisir l'évolution de cette zone.**

Photo 1 : Echantillonnage sur la Station Dormante

PR AEP VIVE CAPOT est une station à facies dominant rapide (69%). Pour la troisième année consécutive, les facies rapides représentent au moins 50 % des points échantillonnées. La richesse totale à cette station en 2010 (7 taxons) est légèrement inférieure à la moyenne des prélèvements précédents et les groupes des poissons et des macrocrustacées sont tous deux à mettre en cause. Un seul taxon de poisson a pu être capturé sur cette station, Sycidium sp et cela peut être mis en rapport avec le facies dominant de la station, milieu privilégié de l'espèce. Celle ci a cependant été capturée en nombre si bien que la densité de l'espèce est proche de celle des macrocrustacés. Les deux groupes sont donc équilibrés à la station. Les deux dernières captures avaient déjà mis en évidence ce phénomène avec néanmoins une légère supériorité des invertébrés. En 2010, deux familles composent la population de ces derniers : les Atyidae et les Palemonidae. Les premiers sont majoritaires (Atyidae 74% des captures de crustacés). Le potentiel de reproduction dépasse 10%. Ainsi la densité relativement haute atteste d'un milieu d'accueil riche. Cependant, la baisse de richesse et la diminution de la diversité de poissons sont deux points négatifs pour le maintien de la qualité de la station.

Avec seulement deux facies, **GRAND GALION** est composé principalement de plat lotique, tout comme en 2007 et 2008. Les richesses en crustacés et en poissons sont égales cette année (4 taxons dans chaque groupe) mais on note une baisse de la diversité d'invertébrés par rapport à 2007-2008. Les trois principales familles sont pourtant présentes avec une nette dominance des *Palaemonidae*. Leur densité est près de 18 fois plus grande que celle des poissons, mais la densité totale est parmi les plus faibles observée. Celle ci n'a jamais été si faible durant tous les suivis effectués sur la station. La communauté de poissons se compose de 3 familles et on note la présence de *Poecilia reticulata*, une espèce exogène. Le potentiel de reproduction de la station est nul. **Ce fait, ainsi que la baisse de richesse et de**

densité de la station, pourraient être les indices d'une baisse de qualité à GRAND GALION.

Photo 2 : Faciès Plat lotique de Grand Galion

PONT RD10 CERON est une des rares stations à facies dominant rapide (66%). Cela contraste avec l'unique autre échantillonnage qui avait été fait à cette station au cours de laquelle la station était à dominante lente. C'est une des rares stations (avec PONT DE CHAINES) à posséder une richesse piscicole (5 taxons) supérieure à celle des macro crustacés (4 Taxons). Malgré tout, on note une baisse de la richesse en poisson par rapport à 2007. Deux taxons relativement rares ont pourtant été capturés à cette station : Anguilla rostrata et Awaous banana. En dépit de leurs faibles richesses, la densité des crustacés est la plus grande, quatre fois plus haute que celle des poissons en 2010. La densité totale de la station est en augmentation par rapport à 2007. La dominance poissons-crustacés étant sensiblement identique entre 2007 et 2010, ce sont bien les densités des deux groupes qui ont augmenté. Avec la station PETIT BOURG, PONT RD10 CERON n'a permis la capture que d'une seule famille de crustacé (Palaemonidae). Les poissons, plus diversifiés, sont dominés par la famille des Gobiidae et l'espèce Sicydium sp. Le potentiel de reproduction des macrocrustacés est proche de 10. A cette station, de nombreux facteurs paraissent attester d'une bonne qualité du milieu. On remarque notamment, la présence de quelques espèces de poissons peu fréquentes, une densité croissante et un potentiel de reproduction des invertébrés relativement élevé.

Fond Baise est une station à facies lent dominant, principalement plat lotique. 2007 avait permi ce constat alors qu'en 2008 la station était majoritairement rapide. La richesse totale observée ici (13 taxons) est la plus élevée des stations de surveillance de cette année. C'est l'augmentation de la diversité piscicole depuis 2007-2008 qui permet ce résultat. De plus, la station est la seule, avec Stade Grand Riviere, à abriter une densité de poissons supérieure à celle de macrocrustacés. Les années 2007 et 2008 avaient pourtant permis la mise en évidence d'une dominance nette de ces derniers. La densité totale est moyenne et intermédiaire aux prélèvements de 2007 et 2008. Les *Gobiidae* expliquent largement la dominance piscicole des poissons en 2010. Mais la station a également permis la capture de 3 taxons rarement capturés cette année : *Centropomus sp, Anguilla rostrata* et *Awaous banana*. La communauté de crustacés est quant à elle composée des trois principales familles de crustacés. Le potentiel de reproduction de ces dernières est faible à cette station (2,14%). Les poissons prennent une part prépondérante de la station. Leur richesse et leur abondance font de cette station un milieu sans doute particulier qu'il convient de surveiller.

RAPPORT FINAL Page 57/135

STADE GRAND RIVIERE se compose d'une des gammes de facies les plus diversifié (4) à dominance lente. L'unique autre échantillonnage de la station en 2007 avait permis la pêche sur radier en majorité. La richesse totale est moyenne (8), mais cependant en augmentation vis à vis de 2007. Les macrocrustacés peuvent l'expliquer puisque de 2 taxons en 2007 ils passent à 5. La richesse piscicole perd en revanche une espèce. Les densités montrent des résultats inverses à la richesse. C'est à dire que les poissons ont été capturés en plus grand nombre, tous comme le premier échantillonnage de 2007. Sicydium sp. compose la grande majorité de cette communauté piscicole en 2010. Bien qu'en augmentation par rapport à 2007, la densité totale de la station est la deuxième plus faible observée cette année sur les stations de surveillance. Deux familles participent à la formation de la communauté invertébrée, les Palaemonidae et les Atyidae. Malgré leurs faibles abondances, le potentiel de reproduction est assez élevé : près de 20 %. Ainsi les résultats plutôt médiocres de la station (faible densité et richesse) pourraient s'améliorer du coté des invertébrés.

GUE DE LA DESIRADE est une des quelques stations à dominance Rapide en 2010. La richesse totale y est équivalente en 2010 (8 taxons) à la moyenne de 2007-2008. La part de taxons invertébrés est cependant en augmentation à la défaveur de la part piscicole, représentée par une seule espèce cette année : Sicydium sp. Ceux ci sont également largement minoritaires en abondance dont ils ne représentent que 1,5%. Ce résultat n'est pas représentatif du milieu puisque la station est à dominance rapide, facies auquel est inféodé l'espèce. Mais ce pattern était déjà observé au cours des précédents échantillonnages. La densité totale de la station est moyenne et légèrement inférieure à celle de 2008. Les trois familles de macro crustacés sont présentes dans des proportions toutefois inéquitables. Par ordre décroissant de dominance on trouve : les Atyidae, les Palaemonidae et les Xiphocaridae. Le potentiel de reproduction de ces groupes est plutôt faible, il s'élève à 6,81. Ainsi la majeure partie des indices de la station est proche des moyennes. Cependant la faible richesse de poissons et moins élevée que les années passées montrent qu'un suivi de la station est nécessaire.

Photo 3 : Faciès de Gué Désirade

PONT RD24 ST MARIE EN 2010 a permis un échantillonnage équitable entre facies rapide et lent. Ce résultat équivalent à 2008 diffère de 2007, année lors de laquelle l'hydrologie lente dominait. La richesse totale moyennement élevée (10 taxons) est composée en majorité de taxons invertébrés (7 taxons). Par rapport aux échantillonnages précédents, on observe donc une baisse de la diversité piscicole et une stagnation du nombre d'espèces de macrocrustacés. La densité totale de la station est en augmentation à chaque échantillonnage. Cette année, c'est la plus élevée de toutes les stations, principalement du fait de la forte participation de la famille de *Atyidae* (56% de la communauté). Les deux autres familles d'invertébrés sont cependant très présentes également se qui amène la part de macrocrustacés dans la communauté à 92%. Malgré tout, le potentiel de reproduction du groupe est relativement faible (7,13%). La communauté de poissons est composée à 99% par *Sicydium sp.*, mais on doit noter la présence de l'espèce introduite *Poecilia reticulata*. **La**

densité élevée et croissante de la station atteste d'une capacité importante d'hébergement du milieu. Cependant, la forte dominance du groupe des *Atyidaes* et la baisse de la richesse piscicole ne sont pas des indices d'une qualité durable de la station.

PETIT BOURG est la seule station mono facies en 2010, composée totalement de plat lotique. Les années 2007 et 2008 avaient chacune montré des facies plus variés. Ses richesses en invertébrés et en poissons sont équivalentes (3 taxons pour chacun des groupes). On note une légère baisse de la diversité ichtyologique par rapport à 2007-2008. Le peuplement de la station est atypique. D'une part la famille invertébrée des Atyidae n'y est pas représentée, d'autre part l'espèce Sicydium sp. est pratiquement absente de la communauté de poissons. Cette dernière remarque pourrait s'expliquer par l'absence de facies rapides auxquels sont inféodés les individus de l'espèce cotée précédemment. La densité totale de la station se situe pourtant parmi les plus élevées observées. Elle est de plus en augmentation à chaque nouveau suivi. La part de crustacés y est toujours très majoritaire et cette année elle atteint 97% de la communauté aquatique. Les Palaemonidae sont les plus fréquents mais les Xiphocaridae composent une part respectable de l'ensemble des captures. Le potentiel de reproduction des macrocrustacés (2,14%) est faible. La communauté piscicole est dominée par l'espèce Eleotris perniger, seule représentante de la famille des Eleotridae. L'espèce exogène Poecilia reticulata a également été capturée sur la station. Ainsi, quoique la composition spécifique de la station soit un peu particulière, la stabilité des parts poissons/crustacés et la densité croissante de la communauté ne nous permettent pas de croire à une baisse de la qualité de la station.

PALOURDE LEZARDE est composée en majorité de facies de types rapides qui associés aux cascades en font une station à hydrologie élevée. Les richesses totales, en poissons (1 taxon) et en crustacés (7 taxons), sont équivalentes à celles observées en 2007, unique autre année de suivi. La densité totale de la station fait partie des plus élevées observées cette année, et les macrocrustacés y sont amplement majoritaires (98%). Ces valeurs, de densité et dominance invertébrés, semblent cependant communes à la station. Les macrocrustacés ont toujours été largement majoritaires, tandis que la densité n'est que légèrement inférieure à celle de 2008. Les *Atyidae* sont dominants parmi les invertébrés mais on trouve aussi des espèces des deux autres familles. Le potentiel de reproduction de la station est particulièrement élevé et atteint 27%. Ainsi on peut dire que la part invertébrée de la station se porte bien, en diversité, abondance et croissance. La faible qualité de la communauté piscicole semble récurrente à la station.

Photo 4 : Faciès rapide/cascades de Palourde Lézarde

AMONT CONFLUENCE PIROGUE possède une hydrologie à facies équitablement répartie entre lent et rapide. Le plat lotique reste cependant le dominant. Lors de l'unique précédent échantillonnage de 2007, les facies lents étaient dominants. La richesse de la station est

assez élevée (11 taxons) et particulièrement celles des macrocrustacés (8 taxons). Toutes les espèces de la famille des *Atyidae* sont présentes, 3 de la familles des *Palaemonidae* et la seule espèce de *Xiphocaridae*. La densité de la station est la plus faible observée cette année sur les stations de surveillance mais elle est supérieure à celle observée en 2007. Les trois quarts de la communauté sont composés de crustacés et le reste de poissons, soit à peu de chose près l'équivalent de 2007. La majeure partie des invertébrés fait partie de la famille des *Atyidae*, mais les deux autres familles sont présentes. Le potentiel de reproduction de ceux ci est le plus élevé de toutes les stations cette année (33,92%). La communauté de poissons est dominée par *Sicydium sp.* **Amont Confluence Pirogue malgré sa très faible densité, en augmentation cependant, possède certains indices en sa faveur : une forte richesse et un potentiel de reproduction élevé. Ce dernier point pourrait être favorisé par la faible densité. On peut penser que les prochains échantillonnages permettent des captures plus importantes.**

PONT RN1 possède cette année une majorité de facies lents. Ceux ci, proches de 50% en 2007 et 2008 atteignent 72% en 2010. La richesse totale de la station est moyenne, et composée de 6 espèces d'invertébrés et 3 de poissons. La diversité du premier groupe est inférieure à la moyenne de 2007-2008 tandis que pour le deuxième la richesse est en augmentation. La densité totale est proche de la valeur moyenne des stations de surveillance en 2010 et équivalente à la valeur de 2008. La différence entre densité d'invertébrés et de poissons est la plus élevée à cette station (d'un facteur 161) et cela est en partie explicable par la très faible densité du deuxième groupe. C'est la première fois, depuis 2007, qu'une telle différence est observée. Trois espèces de poissons ont été capturées, *Sicydium sp.* et deux taxons d'Eleotridae. Les trois familles de macrocrustacés ont pu être échantillonnées. Les *Atyidae* dominent, suivie des *Palaemonidae* et des *Xiphocaridae*. Le potentiel de reproduction de ces derniers est faible, 3,96%. Les caractéristiques principales (densité, proportion crustacés/poissons) de la station semblent constantes depuis le début du suivi. On peut donc croire à une stabilité de la qualité de la station.

Photo 3: Xiphoridae

PONT BELLE ILE est une station à facies majoritaire lent. Ceux ci sont relativement diversifiés (3 lent et 1 rapide). La lenteur et la diversité des facies sont tous deux plus importants que pendant les années 2007 et 2008. La richesse totale est plutôt faible (7 taxons) et la diversité de macrocrustacés (5 taxons en 2010) est en baisse alors que celle des poissons (2 taxons) stagne par rapport à 2007-2008. La densité totale est dans la moyenne des autres stations et intermédiaire aux années 2007-2008. Les crustacés sont largement majoritaires et 32 fois plus denses que les poissons. Cette dominance a été observée chaque année du suivi et les poissons ne représentent jamais plus de 3% de l'abondance. Les trois principales familles de crustacés sont présentent avec par ordre décroissant d'abondance les *Palaemonidae*, les *Xiphocaridae* et les *Atyidae*. Leur potentiel de reproduction (3,81%) est plutôt faible. Du coté des poissons, le taxon majoritaire est l'espèce invasive *Poecilia reticulata*. **A cette station, la**

densité et le partage de la communauté poissons-crustacés semblent constants. Pourtant, la faible richesse, alors que les facies sont diversifiés, et la dominance d'une espèce exotique de poissons pousse à croire à une qualité médiocre de la station.

ST PIERRE (ANCIEN PONT) possède une majorité de facies de type rapide en 2010, tout comme en 2008. La richesse de la station est parmi les plus élevée observée cette année avec 6 taxons de chacun des groupes, poissons et crustacés. La partie piscicole est remarquable car abritant *Anguilla rostrata* et *Dormitator maculatus*. Ce dernier n'a été capture qu'ici. La densité permet les mêmes remarques que la richesse: elle est élevée et équitable entre les deux groupes. La densité totale est proche de celle de 2007, mais inférieure à celle de 2008. Cette année avait cependant permis des captures exceptionnelles. Le partage en part égale de l'abondance des poissons et des crustacés est observé depuis 2007. Chez les poissons, *Sicydium sp.* domine largement (97%) en accord avec les facies rapides dominants. Chez les macro crustacés, la famille des *Palaemonidae* domine avec quatre espèces dont deux majoritaires: *Macrobrachium faustinium* et *M. heterochirus*. Leur potentiel de reproduction est moyen et s'élève à 11,29%. Ainsi la constance de la richesse, des parts de crustacés et poissons et la densité élevée en 2010 permettent de conclure à une qualité honorable de la station.

3.4.9.2. Réseau d'enquête

Cette deuxième campagne consécutive de suivi des stations d'enquête permet cette année une analyse et une interprétation des données plus poussées.

La station **Seguineau** n'est composée que d'un unique facies de type plat lotique. La modification de ce facies, par rapport à l'an passé, pour un facies de vitesse de courant inférieur est également observé sur les autres stations d'enquêtes. Ces modifications peuvent donc être attribuées à un niveau de précipitation inférieur à celui de l'an passé. Le groupe des crustacé ne semble pas affecté par ces modifications. D'une part la richesse de ce groupe reste stable entre les deux années avec 8 espèces. La famille des *Palaemonidae* et plus précisément le genre *Macrobrachium* domine cette part de la communauté aussi bien en taxons qu'en abondance. D'autre part on observe une augmentation importante de la densité des individus, d'un facteur 2,5. Enfin le potentiel de reproduction atteint un niveau de 11,7%, soit une valeur élevée en comparaison aux chiffres habituels observés en cette période en Martinique.

Le groupe des poissons réagit différemment cette année, comme l'atteste l'observation des abondances relatives. En effet, équilibrées en 2009, ces valeurs désavantagent clairement le groupe des poissons en 2010. La richesse spécifique du groupe est d'ailleurs également en baisse, passant de 5 à 2 taxons en 2010. La famille des *Gobiidae* reste cependant majoritaire.

En 2009, malgré l'homogénéité de la station, les caractéristiques de la communauté étaient satisfaisantes. L'année 2010 est marquée par une baisse de la qualité à cette station. D'une part la richesse totale diminue et d'autre part l'équilibre entre crustacé et poissons disparaît.

A CASE NAVIRE (BOURG SCHOELCHER), seulement 2 facies ont été échantillonnés en 2010, soit une diminution de moitié par rapport à 2009. On constate que les facies les plus rapides sont absents cette année et des modifications pluviométriques peuvent être mises en cause. La communauté aquatique ne présente pourtant pas les mêmes modifications qu'à la station précédente.

Tout d'abord la richesse stagne, pour les poissons comme pour les crustacés. Ensuite, bien que la densité soit en baisse, celle ci est répartie équitablement sur les deux groupes aquatiques. En conséquence la répartition des abondances relatives entre ceux ci reste identique à 2009 avec un faible avantage pour les crustacés (60%). Les abondances relatives des familles montrent une répartition plus équitable en 2010. Les 3 familles de crustacés occupent des parts égales, tandis que la dominance des *Gobiidae* chez les poissons diminue

pour faire une place plus importante aux *Eleotridae* et *Mugilidae*. Le potentiel reproducteur des invertébrés est en diminution et passe de 5,5 à 3,5% en 2010.

Comme en 2009, la station de CASE NAVIRE (BOURG SCHOELCHER) se présente comme une station à la richesse, diversité et abondance relativement hautes, et partagées équitablement entre les poissons et les crustacés. L'équilibre supérieur de cette année pourrait traduire une amélioration de la station.

En 2010 comme en 2009, la station de **PONT MONTGERALD** a pu être échantillonnée sur 4 facies différents. Ils sont par contre de types plus lents cette année et les pluviométries pourraient avoir eu un impact sur ceux ci.

La richesse est en baisse pour les deux groupes et chacun affiche une espèce de moins cette année. Les densités des crustacés et des poissons diminuent également mais de manière équitable. Les abondances relatives des deux groupes sont toujours reparties équitablement. Chez les crustacés, il apparaît cette année une deuxième famille, quelques individus de *Xiphocaridae*, alors qu'en 2009, les *Palaemonidae* étaient seuls. Le potentiel de reproduction des crustacés est par contre nul cette année puisque aucun individu grainé n'a pu être observé. Chez les poissons, la répartition en 2010 des deux familles majoritaires, *Gobiidae* (20%) et *Eleotridae* (26%), est plus équitable que l'année dernière (Respectivement 9 et 32%). Contrairement à l'an passé aucune espèce introduite n'a été capturée sur la station.

PONT MONTGERALD présente des richesses et densités en baisse cette année mais relativement bien partagées entre poissons et crustacés. Bien que la richesse spécifique ait diminué, les abondances relatives des familles sont plus équitables. Le potentiel de reproduction nul des crustacés est inquiétant.

3.4.9.3. Physico-chimie sur biote

Huit stations du contrôle de surveillance, d'enquête et opérationnel ont fait l'objet d'analyses chimiques sur le biote, du fait des difficultés sur certaines d'entre elles à échantillonner une biomasse suffisante pour effectuer les dosages. Les analyses réalisées sur les populations de *Sicydium sp.* des différentes stations mettent en évidence une contamination en Mercure sur 4 stations : Bourg Schoelcher sur la rivière Case Navire, Fond Baise sur la rivière Carbet, Stade de Grand Rivière sur Grand Rivière et Pont de Montgérald sur la rivière Monsieur. Ces teneurs s'échelonnent de 20 μ g/kg à 40 μ g/kg de poids frais. Aucune contamination en Hexachlorobutadiène n'a été détectée sur l'ensemble du réseau. Du chlordécone 5 beta hydro a été détecté sur les stations Prise AEP Vivé-Capot (39 μ g/kg), Séguineau (39 μ g/kg) et Pont de Montgérald (18 μ g/kg). Ce sont également à ces stations que les teneurs en chlordécone dépassent les seuils de quantification, respectivement 600 μ g/kg, 771 μ g/kg et 461 μ g/kg. A noter la présence de traces de chlordécone détectées à la station Stade de Grand Rivière sur Grand Rivière.

RAPPORT FINAL Page 62/135

Tableau 16. Résultats des analyses physico-chimiques réalisées sur le biote dans les stations des réseaux de surveillance, opérationnel et d'enquête, année 2010.

Rivière	Station	Code sandre	Type DCE	Date de capture		Poids frais (g)	Matière sèche (%)	Matière grasse (%)	Mercure (μg/kg PF)	Hexachlorobutadiène (μg/kg PF)	Chlord écone 5 beta hydro (μg/kg)	Chlordécone (µg/kg)
Case Navire	Case Navire (bourg Schœlcher)	08302101	enquête	11/04/2010	Sicydium sp.	158	24,3	0,7	30	<1	<10	<10
Capot	Pr AEP-Vivé-Capot	08115101	Surveillance et opérationnel	29/04/2010	Sicydium sp.	329	24,3	2,5	<10	<1	39	600
Carbet	Fond Baise	08322101	Surveillance	21/04/2010	Sicydium sp.	64	24,4	0,8	20	<1	<10	<10
Grand Rivière	Stade de Grand Rivière	08102101	Surveillance	26/04/2010	Sicydium sp.	444	24,7	1,2	20	<1	<10	P
Lézarde	Palourde Lézarde	08501101	Surveillance/Référence	07/05/2010	Sicydium sp.	200	26,7	4,6	<10	<1	<10	<10
Lorrain	Séguineau	08205101	enquête	27/04/2010	Sicydium sp.	108	25,6	1,2	10	<1	39	771
Lorrain	Amont confluent Pirogue	08203101	Surveillance	27/04/2010	Sicydium sp.	166	24,1	1,6	10	<1	<10	<10
Monsieur	Pont de Montgérald	08412102	enquête	25/04/2010	Sicydium sp.	102	24,4	0,7	40	<1	18	461

4. Bilan du contrôle de surveillance et d'enquête

La réalisation du **contrôle de surveillance**, dans le cadre de la mise en œuvre de la Directive Cadre Européenne sur l'Eau, sur 20 stations réparties sur 16 cours d'eau de la Martinique pour l'année 2009 a abouti aux résultats suivants :

Les **conditions physico-chimiques** *in situ* sur les sites de contrôle de surveillance en juin 2010 coïncident aux valeurs généralement obtenues sur le réseau hydrographique de la Martinique. L'évolution inter annuelle n'est pas sensible (hormis l'oxygénation qui est très sensible aux conditions météorologiques). Les stations du sud présentent toujours des températures et une conductivité plus élevées.

Le bilan de la qualité des rivières depuis 2007, basé sur la **flore de diatomées** (IBD), met en évidence une **dégradation pour 5 stations** (stade de Grand Rivière, amont confluence Pirogue, Petit Bourg, Pont RN1 et St Pierre). **Cinq stations** sont concernées par une **dégradation ponctuelle** (Habitation Céron, AEP Vivé Capot, Grand Galion, Dormante et Gué de la Désirade). La station **Pont de Chaînes** ne montre **aucune tendance évolutive**. Enfin **5 stations** présentent une **amélioration de leur qualité biologique globale** (Séguineau, Pont de Montgérald, Bourg Schoelcher, Fond Baise et Brasserie Lorraine).

L'analyse actuelle basée sur les **macroinvertébrés benthiques** souffre pour l'instant du manque d'indice synthétique robuste permettant d'intégrer la sensibilité des taxons locaux. Néanmoins, les indices structuraux « génériques » permettent de donner une image de l'équilibre actuel des peuplements.

En 2010, les stations qui se recoupent par leurs notes d'indices les plus élevées sont les stations **Palourde**, **RD10 Habitation Céron et Amont confluence Pirogue**, ces deux dernières étant situées en zone nord où les pressions anthropiques sont faibles. Les notes les plus basses sont attribuées aux stations **Gué de la Désirade**, **Saint-Pierre ancien pont**, **Pont RN1**, **Pont de Chaine**, **Petit Bourg**, **Dormante et Aval bourg Rivière Pilote**.

5. Evaluation de la qualité des stations selon la référence

Conformément à la mise en œuvre de la Directive Cadre européenne sur l'Eau, le programme de **contrôle de surveillance** a été initié en 2007 pour connaître et assurer le suivi de l'état général des eaux du district de la Martinique. En 2009, des stations de contrôle d'enquête, au nombre de quatre, ont été positionnées afin de détecter de possibles pollutions aux points choisis. Les contrôles opérationnels, tels que définis par les circulaires DCE 2006/16 du 13 juillet 2006 et DCE 2007/24 du 31 juillet 2007, ont été mis en place en 2009. Ils visent à suivre l'amélioration de la qualité des masses d'eau en risque de non-atteinte du « bon état » à l'horizon 2015. Ainsi, dix stations de surveillance sont devenues également stations de contrôle opérationnel.

Parallèlement, le réseau de sites de référence formé de 9 stations et étudié depuis 2005, vise à définir le bon état écologique de référence des masses d'eau. La définition de ce référentiel est indispensable pour juger du niveau de qualité des sites de surveillance.

En 2008, les stations de surveillance avaient pu être notées en fonction des valeurs de référence définies par zone et par type d'indice. Ces valeurs de référence ont été revues en 2009 (voir rapport station référence DCE 2009) et renforcées par les valeurs du suivi de l'année. Les stations d'enquête ainsi que les stations de contrôle opérationnel (valeurs de l'année 2009 des stations de surveillance) seront également notées en fonction des valeurs de référence.

La révision du SDAGE en 2009 a amené au redécoupage des masses d'eau et à la redéfinition des objectifs d'atteinte du Bon Etat chimique, écologique et global.

L'état chimique défini dans la DCE se réfère à une liste de 41 substances prioritaires, et il est jugé uniquement sur la base de ces 41 substances.

L'état écologique est évalué selon les critères des peuplements piscicoles, diatomiques et invertébrés et s'appuie aussi sur les paramètres physico-chimiques (physico-chimie générale et substances spécifiques de l'état écologique, auxquelles a été intégré le chlordécone) et hydro-morphologiques susceptibles d'altérer la qualité biologique.

Le bon état global d'une eau de surface est atteint lorsque son état écologique **et** son état chimique sont **au moins bons**.

Les objectifs d'atteinte du bon état écologique et chimique établis dans le cadre du SDAGE révisé 2009 sont basés sur les états des masses d'eau sur la période 2007 – 2008, en fonction de la nature des altérations observées (biologie, substances spécifiques, substances prioritaires...).

L'objectif 2015 est attribué aux masses d'eau déjà en bon état ou pour lesquelles les pressions à l'origine de la dégradation sont susceptibles d'être résolues rapidement.

RAPPORT FINAL Page 65/135

Les objectifs 2021 et 2027 correspondent à des pressions ou des pollutions plus importantes qui ne pourront par être réglées à court terme.

Les masses d'eau contaminées au chlordécone se voient d'office attribuées un objectif écologique « Moins strict », du fait de la forte rémanence de la molécule. Pour éviter de masquer les autres problématiques avec cette pollution historique, un double objectif écologique (avec / sans chlordécone) est identifié.

Un parallèle, fourni dans le tableau et les cartes qui suivent, est réalisé entre les stations étudiées (surveillance, opérationnel, enquête) et les masses d'eau auxquelles elles sont associées afin de connaître quels sont les objectifs d'atteinte du bon état définis par la révision du SDAGE 2009.

Tableau 17. Masses d'eau et leurs objectifs selon le SDAGE révisé 2009.

Tableau 17: Masses d'eau et leurs objectifs selon le SDAGE Tevise 2009.												
Station(s) associée(s)				Objectif	"Bon Etat" ret	enu en 2009	9					
à la masse d'eau	Masse d'eau	Code	Chimique	Ecologique	Ecologique sans chlordécone	Global	Global sans chlordécone					
Stade Grand'rivière	Grand'Rivière	FRJR101	2015	2015	2015	2015	2015					
AEP Vivé	Capot	FRJR102	2015	Moins strict	2015	Moins strict	2015					
Amont confluence Pirogue	Lorrain amont	FRJR103	2015	2015	2015	2015	2015					
Séguineau	Lorrain aval	FRJR104	2015	Moins strict	2015	Moins strict	2015					
Pont RD24	Sainte-Marie	FRJR105	2027	Moins strict	2027	Moins strict	2027					
Grand Galion	Galion	FRJR106	2021	Moins strict	2015	Moins strict	2021					
	François	FRJR107	2021	Moins strict	2027	Moins strict	2027					
Aval bourg Rivière Pilote	Pilote	FRJR108	2021	Moins strict	2021	Moins strict	2021					
Dormante	Oman	FRJR109	2015	2015	2015	2015	2015					
Petit Bourg	Salée	FRJR110	2027	Moins strict	2027	Moins strict	2027					
	Lézarde aval	FRJR111	2027	Moins strict	2027	Moins strict	2027					
Pont RN1, Brasserie Lorraine, Gué la Désirade, Pont Belle Ile	Lézarde moyenne	FRJR112	2027	Moins strict	2027	Moins strict	2027					
Palourde	Lézarde amont	FRJR113	2015	2015	2015	2015	2015					
	Blanche	FRJR114		2015	2015	2015	2015					
Pont de Montgérald	Monsieur	FRJR115	2027	2027	2027	2027	2027					
Pont de Chaîne	Madame	FRJR116	2027	2027	2027	2027	2027					
	Case Navire amont	FRJR117	2015	2015	2015	2015	2015					
Case Navire bourg Schoelcher	Case Navire aval	FRJR118	2015	2015	2015	2015	2015					
Fond Baise	Carbet	FRJR119	2015	2015	2015	2015	2015					
St-Pierre ancien pont	Roxelane	FRJR120	2027	Moins strict	2027	Moins strict	2027					
	Manzo	FRJR121	2015	2015	2015	2015	2015					
RD10 Habitation Céron		Non	Défini : pas	de masse d'	eau							

Le suivi 2009 a pour objectif de donner l'état des stations du réseau de contrôle de surveillance, opérationnel et d'enquête au regard des différents critères biologiques et de leurs paramètres explicatifs. Les résultats sont présentés après les cartes d'objectifs. Les résultats des stations de surveillance pour les années 2007 et 2008 sont présentés en annexe.

RAPPORT FINAL Page 66/135

Rappelons que l'évaluation de l'état doit s'effectuer au minimum sur la base d'un organisme « animal » et d'un organisme « végétal » et l'état est déterminé par la plus déclassante des deux évaluations. En l'occurrence, l'étude de référence 2009 a confirmé les propositions réalisées en 2008, soit de retenir uniquement les diatomées et les macroinvertébrés comme matrice qualitative. Les indices choisis sont explicités dans le rapport de suivi du réseau de référence de la Martinique 2008 et 2009.

D'autre part, ces mêmes indices ne reflètent pas obligatoirement et de manière immédiate, même s'ils sont liés, la physico-chimie ayant une incidence sur la biologie. C'est pourquoi le **bon état écologique** se juge sur la base des <u>indices biologiques</u> **et** des <u>valeurs physico-chimiques soutenant la biologie, intégrant la physico-chimie générale et substances spécifiques</u>. Ces valeurs n'ont pas été incluses dans l'appréciation présentée dans les tableaux de synthèse.

Dans le cadre de l'étude de référence (cf. rapport « Réseau de référence des cours d'eau de la Martinique, année 2009), des zones de référence ou hydro-écorégions ont été identifiées respectivement pour les diatomées et les macro-invertébrés, permettant l'établissement de grilles de référence adaptées en fonction des spécificités des milieux. Pour les diatomées, l'analyse des observations a amené à classer les stations en 3 zones, avec une zone où les peuplements sont spécifiques au niveau des stations Centre-Nord (Palourde et Gommier). Ce sont donc 3 grilles d'état qui ont été proposées dans le cadre du suivi de référence pour les indices afférents (IBD et IPS). Les zones de référence macro-invertébrés sont quant à elles au nombre de 2, comme rappelé dans le tableau suivant. Les indices de Shannon et d'Equitabilité retenus pour caractériser les macro-invertébrés ont été déclinés chacun en 2 grilles d'état.

RAPPORT FINAL Page 67/135

Tableau 18. Correspondance entre les stations du réseau de contrôle de surveillance, opérationnel et d'enquête et les groupements définis dans l'étude de référence

Rivières	Stations	Code Masse d'eau	Code Station	Zone de référence Diatomées	Stations de référence ressource	Zone de référence Invertébrés	Stations de référence ressource
Grande Rivière	Stade Grand'rivière	FRJR101	08102101	_			
Capot	AEP Vivé	FRJR102	08115101	_			Delevede
Lorrain	Amont confluence Pirogue	FRJR103	08203101	_	Trou Diablesse		Palourde Gommier
Lorrain	Séguineau	FRJR104	08205101				
Sainte Marie	Pont RD24	FRJR105	08213101	_	Amont Habitation		Trou Diablesse
Galion	Grand Galion	FRJR106	08225101	_	Céron		Amont
Madame	Pont de Chaines	FRJR116	08423101	_	Source Pierrot		Habitation Céron
Monsieur	Pont de Montgérald	FRJR115	08412102	Nord	Trace des		Source
Case navire	Case Navire bourg Schoelcher	FRJR118	08302101	_	Jésuites	Nord	Pierrot
Carbet	Fond Baise	FRJR119	08322101	_	Alma		Trace des Jésuites
Roxelane	St-Pierre ancien pont	FRJR120	08329101	_	Tunnel Didier		
Anse Céron	RD10 Habitation Céron	ACER	08015101	_	Amont confluence		Alma Tunnel
	Gué la Désirade	FRJR112	08521101		Pirogue		Didier
Lézarde	Pont RN1 (Place d'Armes)	FRJR112	08521102	_			Amont
Petite Lézarde	Pont Belle Ile	FRJR112	08504101				confluence Pirogue
Lézarde	Palourde	FRJR113	08501101	Palourde	Palourde Gommier		
Pilote	Aval bourg Rivière Pilote	FRJR108	08813102				D . DE-
Oman	Dormante	FRJR109	08824101	– – Sud	Pont RD5 La Broue	Sud	Pont RD5 La Broue
Salée	Petit Bourg	FRJR110	08803101	_ Suu	Beauregard	Suu	Beauregard
Petite Rivière	Brasserie Lorraine	ACER	08533101		J		3

Les classes de qualité calculé à partir de la référence, pour chacune des zones et des indicateurs - IPS, IBD pour les diatomées et Shannon et Equitabilité pour les invertébrés - sont présentées ci-dessous ainsi que sous chacun des tableaux (à suivre) présentant le bilan de la qualité biologique pour les stations étudiées.

Tableau 19. Limites de classes de qualité de la référence 2010

a) Indicateurs diatomées

IPS	Nord	Sud	Nord/Centre	IBD	Nord	Sud	Nord/Centre
Très bonne	13,59	9,84	17,72	Très bonne	14,34	9,94	18,42
Bonne	10,88	7,88	14,18	Bonne	11,48	7,95	14,74
Moyenne	8,16	5,91	10,63	Moyenne	8,61	5,96	11,05
Médiocre	5,44	3,94	7,09	Médiocre	5,74	3,98	7,37
Mauvaise	2,72	1,97	3,54	Mauvaise	2,87	1,99	3,68

b) Indicateurs macro-invertébrés

Shannon	Nord	Sud	Equitabilité	Nord	Sud
Très bonne	3,27	2,80	Très bonne	0,47	0,42
Bonne	2,62	2,24	Bonne	0,38	0,34
Moyenne	1,96	1,68	Moyenne	0,28	0,25
Médiocre	1,31	1,12	Médiocre	0,19	0,17
Mauvaise	0,65	0,56	Mauvaise	0,09	0,08

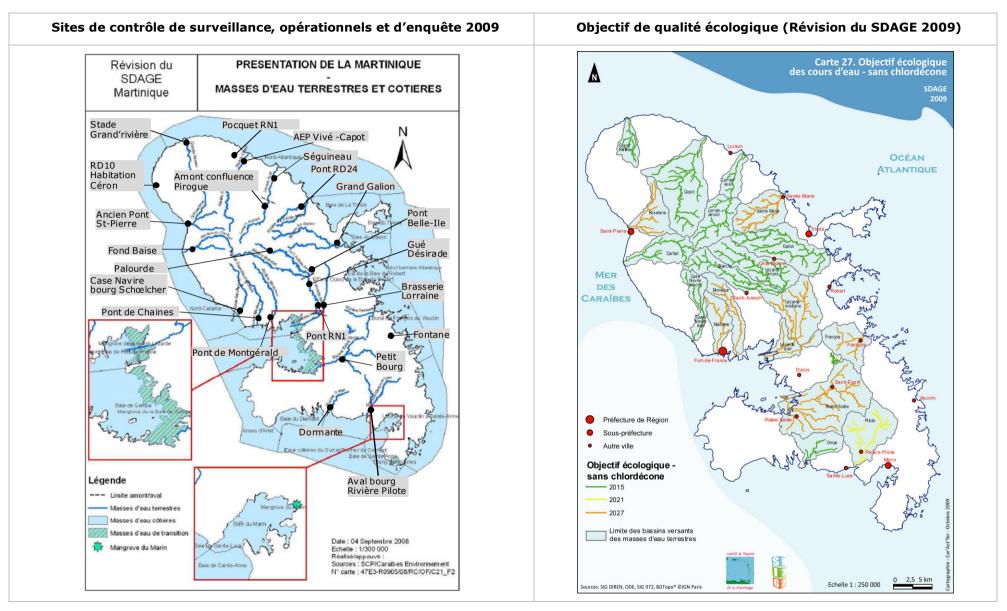


Figure 24 Cartes Réseau de contrôle de surveillance, opérationnel et d'enquête 2009 et objectifs de qualité écologique selon le SDAGE.

Rapport final Page 69/135

Tableau 20. Bilan du suivi biologique du Réseau de Contrôle de Surveillance, opérationnel et d'enquête de Martinique - Année 2010

Remarque: le bon état écologique se juge sur la base des <u>indices biologiques</u> et <u>des valeurs physico-chimiques soutenant la biologie</u> (physico-chimie générale et <u>substances spécifiques</u>. Ces valeurs n'ont pas été incluses dans l'appréciation ci-dessous. Les objectifs écologiques correspondent aux objectifs **sans chlordécone** fixés par le SDAGE révisé.

Cours d'eau	Nom station	Code SANDRE	Type DCE ou complémentaire	Zone de référence	Altitude (m)	Objectif écologique		Indicat	eurs 2010	
Cours a eau	Nom Station	Code SANDRE	Type DCE ou complementaire	zone de reference	Altitude (III)	sans chlordécone	IPS	IBD	Shannon	Equitabilité
Grande Rivière	Trou Diablesse	08101101	Référence	Nord	45	2015	14,9	15,4	3,09	0,47
Anse Céron	Amont prise canal Habitation Céron	08014101	Référence	Nord	30	ND	13,8	14,7	3,15	0,48
Carbet	Source Pierrot	08320101	Référence	Nord	270	ND	13,4	14,4	3,26	0,5
Lorrain	Trace des Jésuites	08201101	Référence	Nord	300	2015	12,5	13,7	3,02	0,46
Galion	Gommier	08221101	Référence	Nord/Centre	310	ND	19,2	19,7	3,82	0,59
Lézarde	Palourde Lézarde	08501101	Surveillance/Référence	Nord/Centre	250	2015	19,3	20	3,79	0,58
Case Navire (Duclos)	Tunnel Didier	08301101	Référence	Nord	200	ND	11,5	12	3,61	0,55
Vauclin	Pont D5 - La Broue	08703101	Référence	Sud	19	ND	11,7	13,5	3,42	0,52
Grande Rivière Pilote	Beauregard	08811101	Référence	Sud	40	ND	10,8	10,6	1,25	0,19
Lorrain	Séguineau	08205101	enquête	Nord	10	2015	16,8	20,0	3,11	0,48
Grande Rivière Pilote	Aval Bourg Rivière Pilote	08813102	enguête	Sud	3	2021	8,8	5,8	1,97	0,3
Monsieur	Pont de Montgérald	08412102	enguête	Nord	12	2027	10	13,8	3,41	0,52
Case Navire	Case Navire (bourg Schœlcher)	08302101	enquête	Nord	8	2015	10,4	14,6	3,03	0,47
Grand Rivière	Stade de Grand Rivière	08102101	Surveillance	Nord	30	ND	13,3	13,6	3,03	0,47
Lorrain	Amont confluent Piroque	08203101	Surveillance	Nord	120	ND	14	15,6	3,71	0,57
Carbet	Fond Baise	08322101	Surveillance	Nord	46	2015	16,5	17,2	3,15	0,48
Lézarde	Palourde Lézarde	08501101	Surveillance/Référence	Nord/Centre	250	2015	19,3	20,0	3,79	0,58
Petite Rivière	Brasserie Lorraine	08533101	Surveillance ACER	Sud	15	ND	10,6	14,7	3,11	0,48
Anse Céron	RD 10 Habitation Céron	08015101	Surveillance ACER	Nord	4	ND	11,7	16,6	3,71	0,57
Capot	Pr AEP-Vivé-Capot	08115101	Surveillance et opérationnel	Nord	50	2015	17,5	18,9	2,72	0,42
Bezaudin	Pont RD24 Sainte-Marie	08213101	Surveillance et opérationnel	Nord	14	2027	13,4	15,7	1,61	0,25
Galion	Grand Galion	08225101	Surveillance et opérationnel	Nord	8	2015	13,6	16,0	1,97	0,3
Oman	Dormante	08824101	Surveillance et opérationnel	Sud	9	2015	12,9	15,4	2,54	0,39
Rivières des Coulisses	Petit Bourg	08803101	Surveillance et opérationnel	Sud	9	2027	6,6	7,8	1,64	0,25
Lézarde	PONT RN1	08521102	Surveillance et opérationnel	Nord	12	2027	10,3	14.8	1,59	0,24
Lézarde	Gué de la Désirade	08521101	Surveillance et opérationnel	Nord	35	2027	18,5	20,0	0,74	0,11
Lézarde	Pont Belle-Île	08504101	Surveillance et opérationnel	Nord	54	2027	14,1	17,4	1,97	0,3
Madame	Pont de Chaînes	08423101	Surveillance et opérationnel	Nord	18	2027	10,4	11,0	2,31	0,35
Roxelane	Saint Pierre (ancien pont)	08329101	Surveillance et opérationnel	Nord	7	2027	9.1	10.0	1,99	0,31
						Moyenne	13,27	14,93		
						Minimum	6,60	5,80		0,11
						Maximum	19,30	20,00	3,82	0,59

IPS*	Nord	Sud	Nord/Centre	IBD*	Nord	Sud	Nord/Centre	Shannon*	Nord	Sud	Equitabilité*	Nord	Sud
Très bonne	13,59	9,84	17,72	Très bonne	14,34	9,94	18,42	Très bonne	3,27	2,80	Très bonne	0,47	0,42
Bonne	10,88	7,88	14,18	Bonne	11,48	7,95	14,74	Bonne	2,62	2,24	Bonne	0,38	0,34
Moyenne	8,16	5,91	10,63	Moyenne	8,61	5,96	11,05	Moyenne	1,96	1,68	Moyenne	0,28	0,25
Médiocre	5,44	3,94	7,09	Médiocre	5,74	3,98	7,37	Médiocre	1,31	1,12	Médiocre	0,19	0,17
Mauvaise	2,72	1,97	3,54	Mauvaise	2,87	1,99	3,68	Mauvaise	0,65	0,56	Mauvaise	0,09	0,08

^{*} Valeurs issues du rapport relatif au Réseau de référence.

Rapport Final Page 70/135

Contrôle de surveillance

Les stations présentant en 2010 un risque de non atteinte du « bon état » : Brasserie Lorraine, Pont RD24 Sainte-Marie, Grand Galion, Petit Bourg, Pont RN1, Gué de la Désirade, Pont Belle-Île, Pont de Chaînes et Saint-Pierre (ancien pont).

Contrôle opérationnel

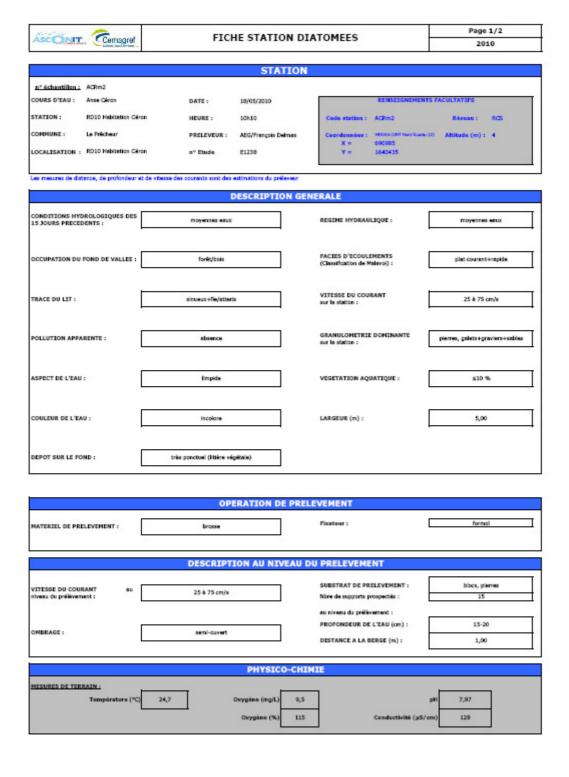
Les stations présentant en 2010 un risque de non atteinte du « bon état » : Pont RD24 Sainte-Marie, Grand Galion, Petit Bourg, Pont RN1, Gué de la Désirade, Pont Belle-Île, Pont de Chaînes et Saint-Pierre (ancien pont).

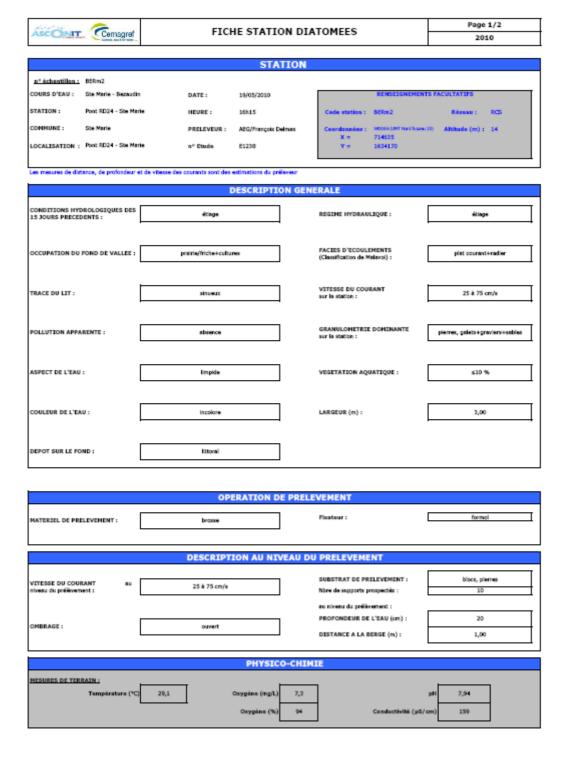
Contrôle d'enquête

Les stations présentant en 2010 un risque de non atteinte du « bon état » : **Aval Bourg Rivière Pilote, Pont de Montgérald, Case Navire (Bourg Schoelcher).**

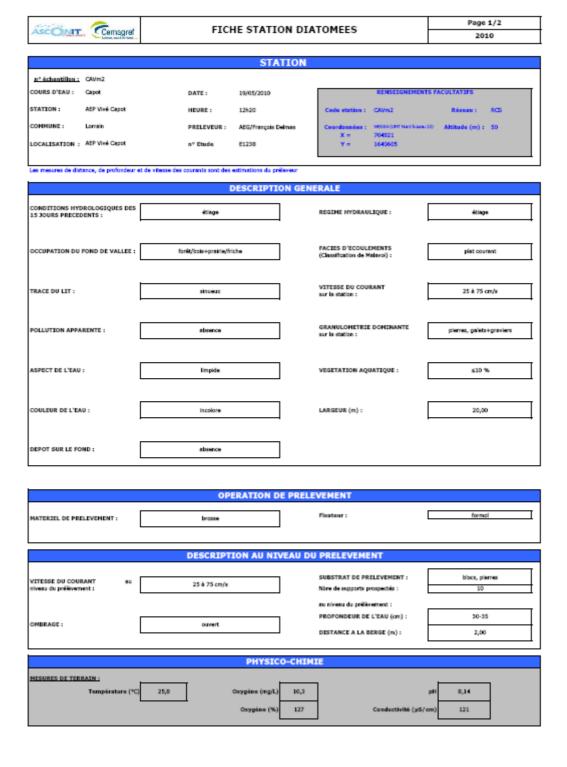
Un point majeur est à prendre en compte pour l'amélioration de la détermination de la qualité des stations et concerne l'amélioration des indices. Le peu de données accumulées jusqu'à maintenant sur le département ne permet pas une élaboration précise des indices. Cet aspect va trouver réponse à l'issue de deux importantes études : l'Atlas diatomées de Martinique démarré mi-2009 ; l'Atlas macro-invertébrés de Guadeloupe et Martinique, démarré début 2010, toutes deux pour une durée de 3 ans.

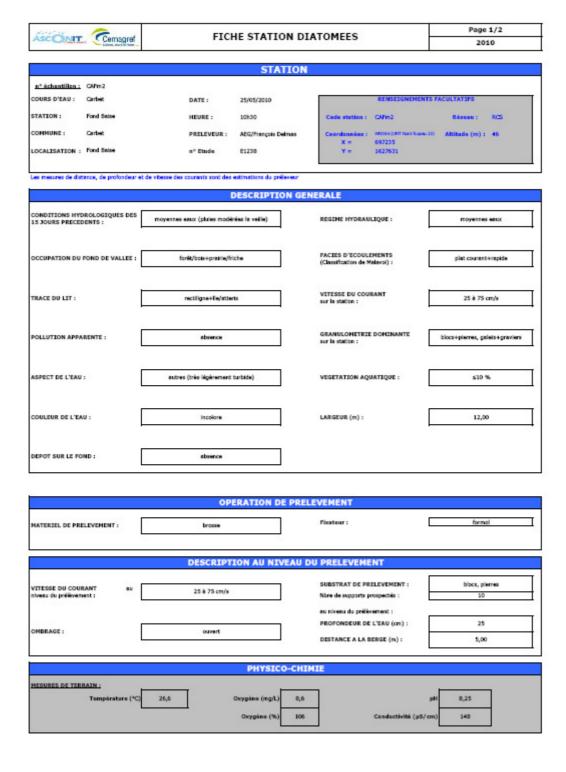
RAPPORT FINAL Page 71/135

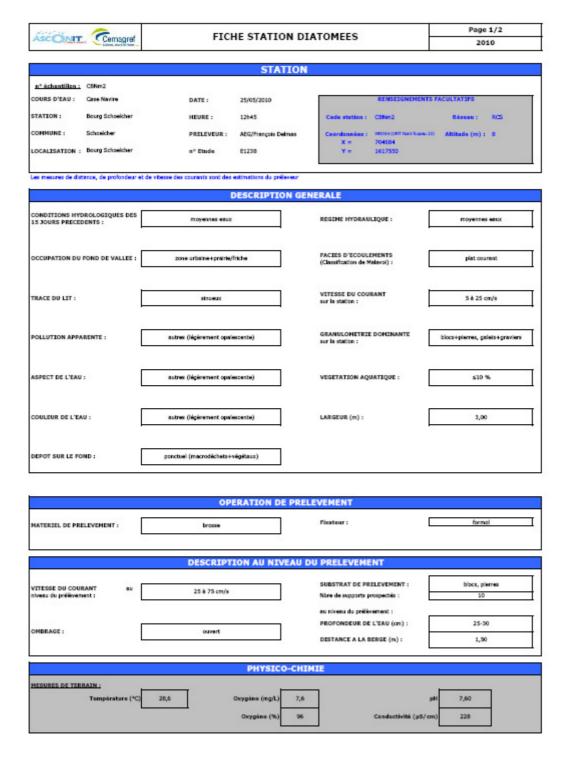

6. Annexes

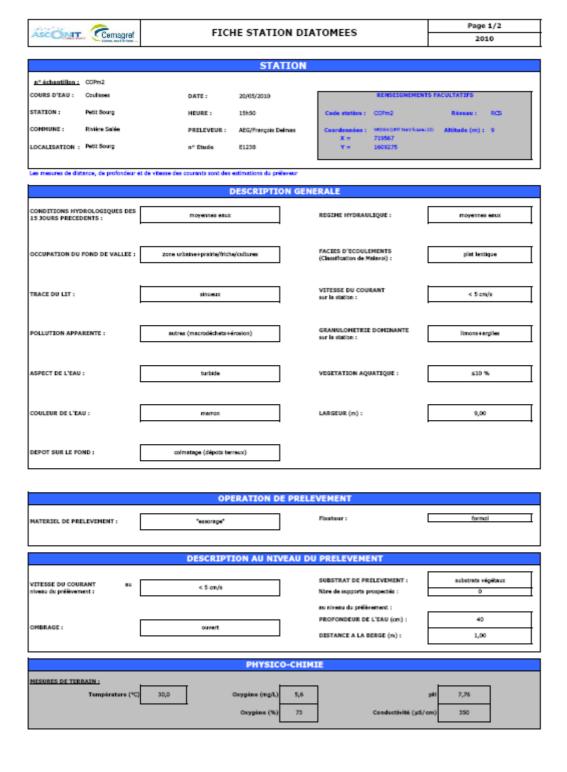

RAPPORT FINAL Page 72/135

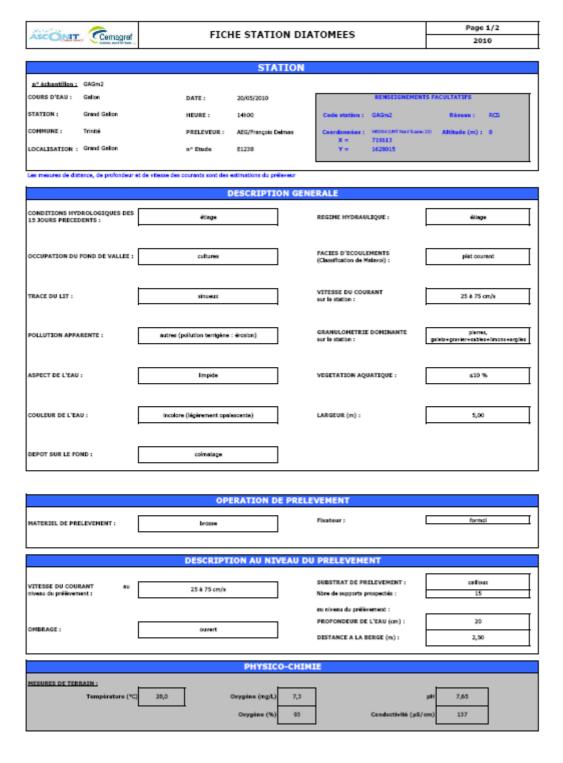
Annexe 1 : Fiches de synthèse des stations

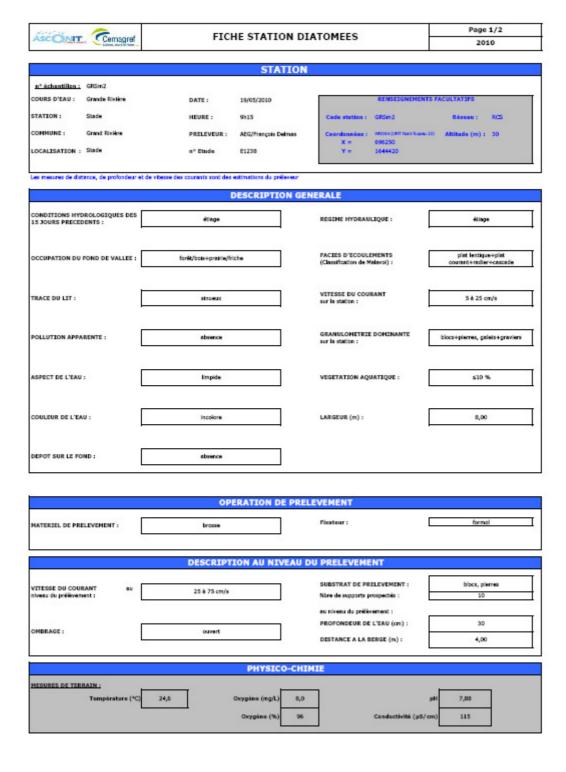


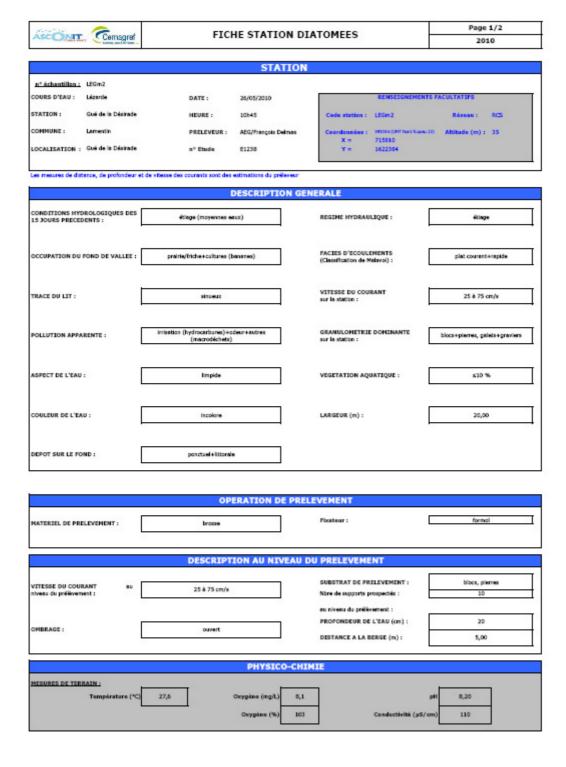


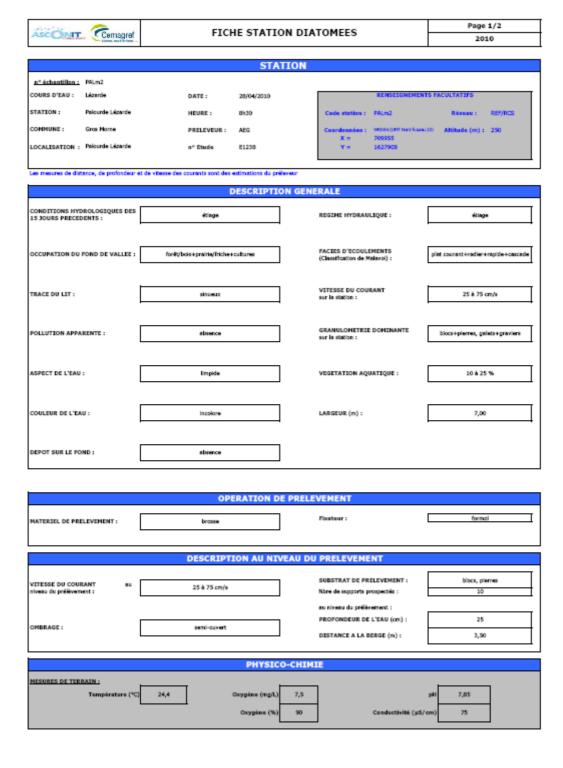

ASCONT. Page 75/135

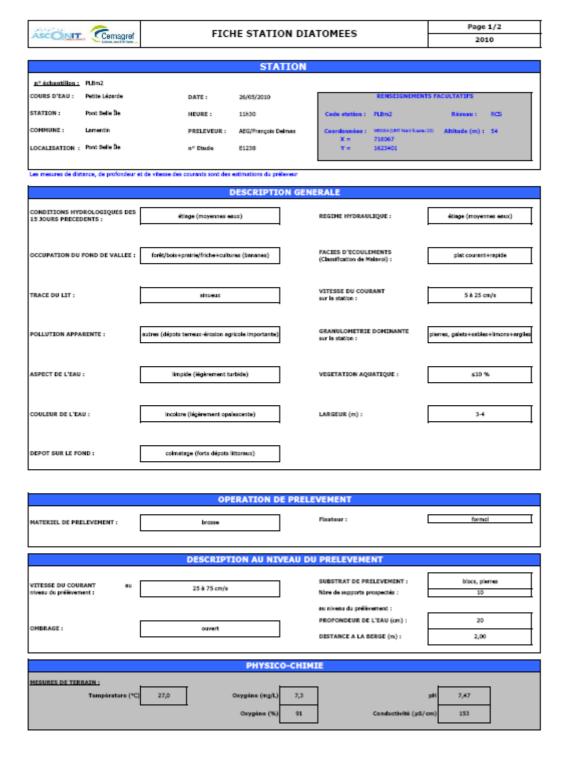

ASCONT. Page 76/135

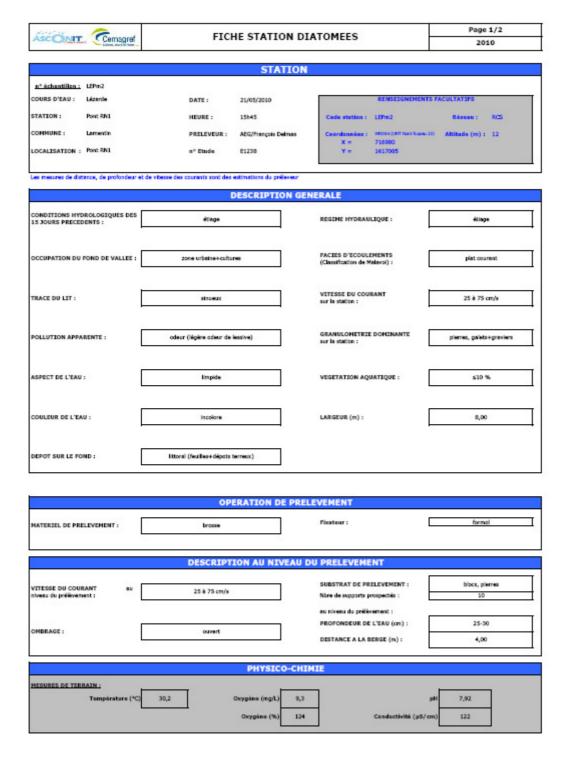


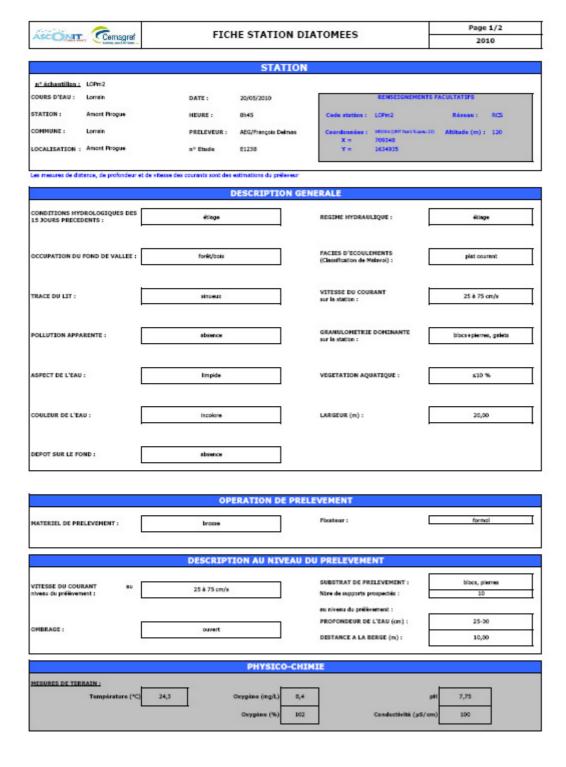



ASCONT. Page 79/135

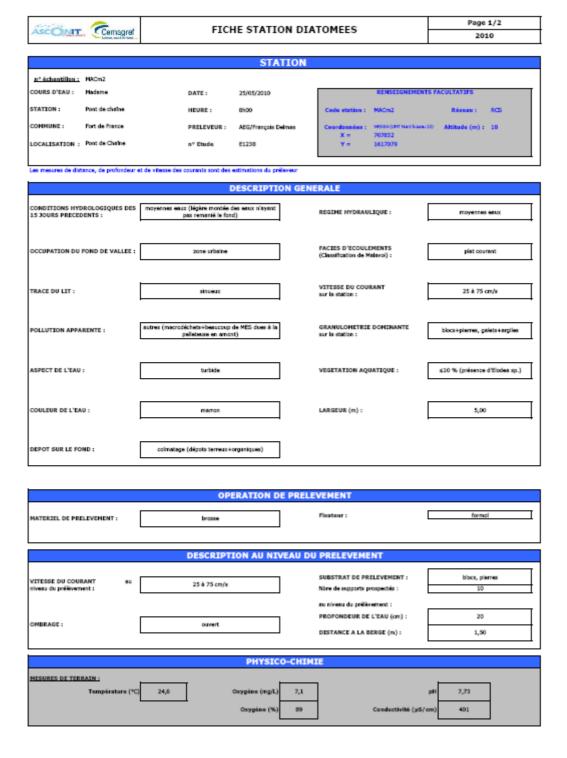

RAPPORT FINAL Page 80/135

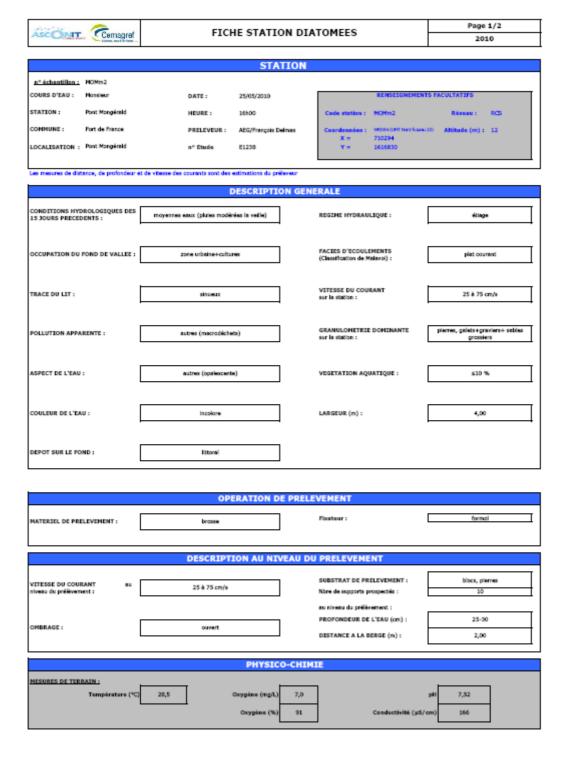


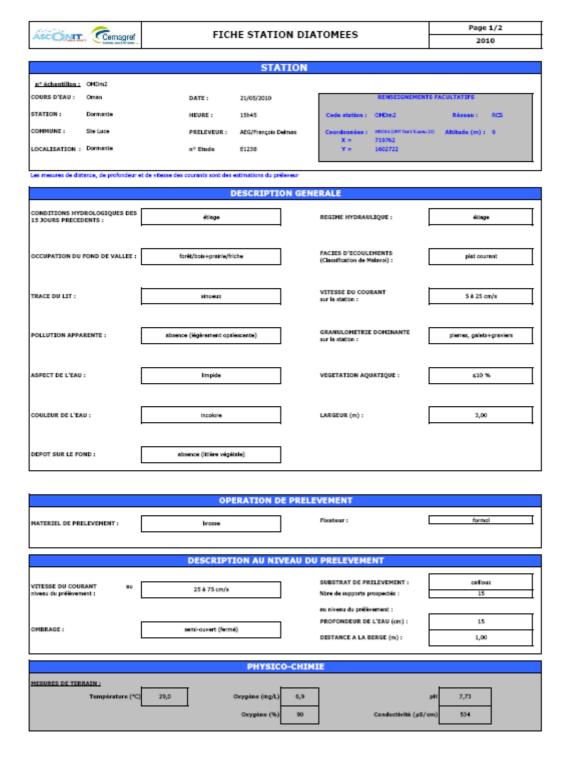

ASCONT. Page 82/135

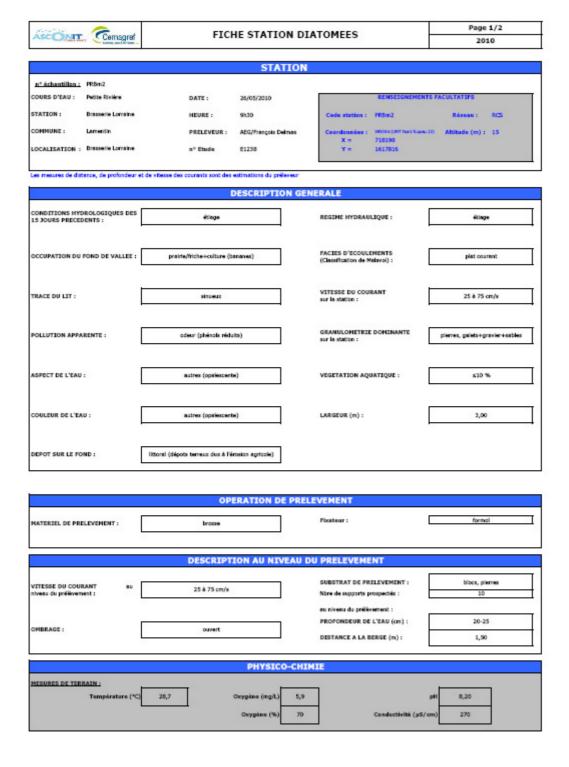

RAPPORT FINAL Page 83/135

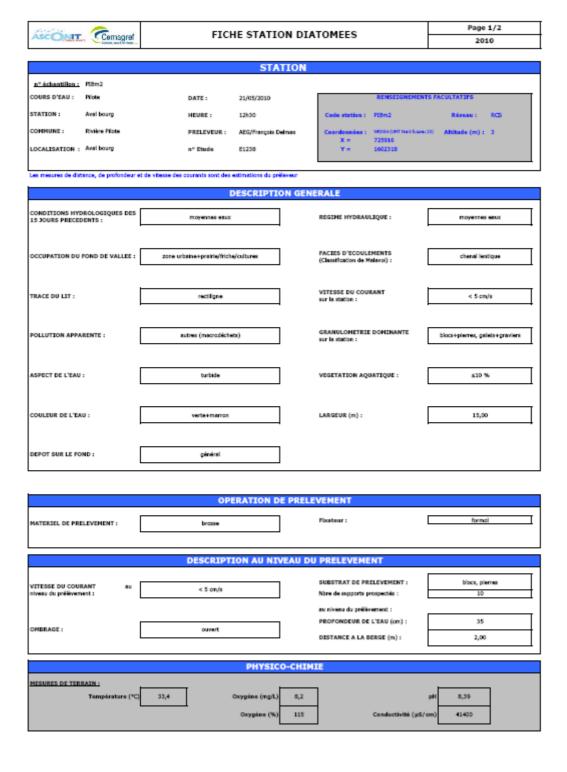

ASCONT. Page 84/135

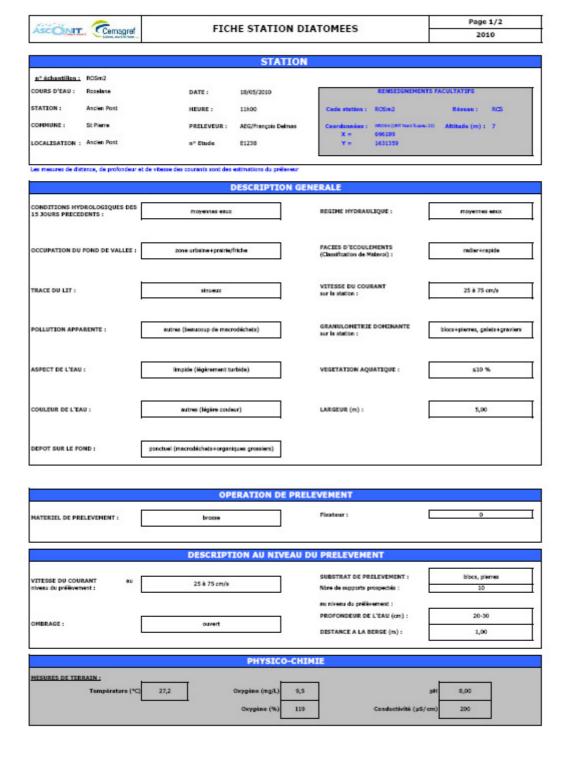



ASCONT. Page 86/135


RAPPORT FINAL Page 87/135




ASCONT. Page 89/135



ASCONT. RAPPORT FINAL Page 91/135

Annexe 2 : Diatomées

RAPPORT FINAL Page 94/135

OMNIDIA 5.3 du 01/03/2009

N° PREP Bassin 20100801510101 MARTINIQUE

SITE RIVIERE RD 10 HABITATION CERON ANSE CERON DATE 18/05/2
CODE HYDROLOGIQUE 080151:
PARTICULARITES E1759 - AEG - Surveillance ACER 18/05/2010 08015101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
11.7	13.3	15.7	7.4	10.2	0.0	8.9	11.1	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
93.1	16.6	6.0	7.6	11.8	5.1	11.8	5.6	

NOTES DE QUALITE / 20

	NB d'es E	pèces ffectif	25 411		Diversité Equitabilité	1.79 0.39	Nombre de genres	18		
Nombr	e o/oo	Code	ou	Désignat	ion		*	: taxon IBD	IPS S	IPS V
305	742.09	DDSP		Diadesmi	is species				3	1
27	65.69	GDES	-	Gomphor	nema designatum E.	Reichardt		*	5	1
12	29.20	EOM	SEMN	Eolimna i	minima(Grunow) Lar	ge-Bertalot		*	3	1
12	29.20	NINC	-	Nitzschia	inconspicua Grunov	,		*	2.8	1
9	21.90	DENT	-	DENTICU	JLA F.T. Kützing				3.7	2.3
9	21.90	ASHU	ADSH	Achnanth	es subhudsonis Hus	tedt		*	5	2
5	12.17	NIFR	-	Nitzschia	frustulum(Kützing)G	runow var.frustulum	1	*	2	1
4	9.73	NNGO	-	Naviculad	dicta nanogomphone	ma Lange-Bertalot 8	& Rumrich	*	3.4	1
4	9.73	EORU	ERTT	Eolimna i	ruttneri (Hustedt) Lar	nge-Bertalot & Monn	ier	*	4.5	2
3	7.30	EOLI	-	EOLIMN/	A Lange-Bertalot & S	chiller			2.8	
2	4.87	TDEB	-	Tryblione	lla debilis Arnott ex (D'Meara		*	2	2
2	4.87	NVDS	-	Navicula(dicta) seminulum (G	runow) Lange Bertai	lot	*	1.5	2
2	4.87	AMUS	-	Adlafia m	uscora (Kociolek & F	Reviers) Moser Lang	e-Bertalot & Metzeltin	*	5	1
2	4.87	NUPR	-	Nupela p	raecipua(Reichardt)	Reichardt		*	5	1
2	4.87	PRBU	-	Planothid	lium robustius (Huste	edt) Lange-Bertalot		*	4.6	1
2	4.87	ADMI	-	Achnanth	idium minutissimum	(Kützing) Czamecki	i	*	5	1
1	2.43	NERI	-	Navicula	erifuga Lange-Bertal	ot		*	2	3
1	2.43	ASTG	-	Amphora	subturgida Hustedt			*	2	2
1	2.43	AFON	-	Amphora	fontinalis Hustedt				4.2	3
1	2.43	GSCA	GYOB	Gyrosign	na scalproides (Rabe	nhorst)Cleve		*	2.8	3
1	2.43	STHE	-	Staurone	is thermicola (Peters	en) Lund		*	5	1
1	2.43	CBAC	-		bacillum (Grunow) C			*	4	2
1	2.43	CPLE	CEUG	Coccone	is placentula Ehrenb	erg var.euglypta (Eh	r.) Grunow	*	3.6	1
1	2.43	NMIC	-		microcephala Grund			*	1	3
1	2.43	ADEG	-	Achnanth	iidium exiguum (Gru	now) Czarnecki		*	3	2

Asconit Consultants - Anne Eulin-Garrigue

Page 95/135 RAPPORT FINAL

OMNIDIA 5.3 du 01/03/2009 1

N° PREP Bassin 20100821310101 MARTINIQUE SITE RIVIERE PONT RD 24 STE MARIE

BEZAUDIN DATE 19/05/2010
CODE HYDROLOGIQUE 08213101
PARTICULARITES E1759 - AEG - Surveillance et Opérationnel

P	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
13.4	13.0	13.3	7.5	11.0	10.1	5.6	11.8	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
77.2	15.7	4.9	6.6	6.6	5.7	8.9	5.5	

NOTES DE QUALITE / 20

	NB d'es E	pèces ffectif	27 400	Diversité Equitabilité	3.73 0.78	Nombre de genres	15		
Nomb	re o/oo	Code	ou	Désignation		*	: taxon IBD	IPS S	IPS V
83	207.50	GDES		Somphonema designatum	E. Reichardt		*	5	1
61	152.50	EOMI	SEMN	olimna minima(Grunow) L			*	3	1
46	115.00	ASHU		chnanthes subhudsonis H			*	5	2
46	115.00	NINC	-	litzschia inconspicua Grun	ow		*	2.8	1
25	62.50		CEUG	occoneis placentula Ehrer		r.) Grunow	*	3.6	1
19	47.50	AMUS	-	dlafia muscora (Kociolek 8			*	5	1
17	42.50	FSAP	-	istulifera saprophila (Lang			*	2	1
17	42.50	NCXM	-	lavicula cruxmeridionalis N				3	2
15	37.50	GPAR	-	omphonema parvulum (K			*	2	1
11	27.50		-	lavicula guasidisjuncta Lar				4	1
9	22.50	MAPE	MPMI	Nayamaea atomus var. per	rmitis (Hustedt) Lange-	-Bertalot	*	2.3	1
9	22.50	EORU	ERTT	olimna ruttneri (Hustedt) L	ange-Bertalot & Monn	ier	*	4.5	2
8	20.00	NAMP	-	litzschia amphibia Grunow	f.amphibia		*	2	2
8	20.00	NPAL	-	litzschia palea (Kützing) W	/.Smith		*	1	3
3	7.50	ESBM	-	olimna subminuscula (Ma	nguin) Moser Lange-B	ertalot & Metzeltin	*	2	1
3	7.50	NSYM	-	lavicula symmetrica Patric			*	3	2
3	7.50	FGOU	-	ragilaria goulardii (Brébiss	on) Lange-Bertalot		*	4	2
2	5.00	GOPP	-	SOMPHOSPHENIA Lange				2.2	2
2	5.00	NDCM	-	laviculadicta cosmopolitan	a Lange-Bertalot		*	2	1
2	5.00	NARV	-	lavicula arvensis Hustedt	•		*	3	1
2	5.00	SMNS	-	Seminavis species				2.5	1
2	5.00	CMLF	-	raticula molestiformis (Hu	stedt) Lange-Bertalot		*	2	1
2	5.00	EOLI	-	OLIMNA Lange-Bertalot 8				2.8	2
2	5.00	FFON	STAB	ragilaria fonticola Hustedt				2	3
1	2.50	NSLC	-	lavicula salinicola Hustedt			*	2	3
1	2.50	SIDE	-	imonsenia delognei Lange	e-Bertalot		*	3	2
1	2.50	NNGO	_	laviculadicta nanogompho	nema Lange-Bertalot /	& Rumrich	*	3.4	1

Naviculadicta nanogomphonema Lange-Bertalot & Rumrich

2.50 NNGO -

Asconit Consultants - Anne Eulin-Garrigue

Page 96/135 RAPPORT FINAL

OMNIDIA 5.3 du 01/03/2009

 N° PREP
 20100811510101

 BASSIN
 MARTINIQUE

 SITE
 AEP VIVE CAPOT

 RIVIERE
 CAPOT

 DATE
 19/05/2010

 CODE HYDROLOGIQUE
 08115101

 PARTICULARITES E1759 - AEG - Surveillance et Opérationnel

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
17.5	15.1	11.9	10.3	15.3	11.5	11.7	17.0	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
57.4	18.9	5.8	10.3	12.3	14.6	11.7	5.3	

NOTES DE QUALITE / 20

	NB d'esp Et	oèces ffectif	20 446		Diversité Equitabilité	2.28 0.53	Nombre de genres	10		
Nombre	0/00	Code	ou	Désignation	1			: taxon IBD	IPS S	IPS V

270	605.38	ASHU	ADSH	Achnanthes subhudsonis Hustedt	*	5	2
43	96.41	DENT	-	DENTICULA F.T. Kützing		3.7	2.3
33	73.99	ADMI	-	Achnanthidium minutissimum (Kützing) Czarnecki	*	5	1
20	44.84	EOM	SEMN	Eolimna minima(Grunow) Lange-Bertalot	*	3	1
19	42.60	NAMP	-	Nitzschia amphibia Grunow f.amphibia	*	2	2
14	31.39	GDES	-	Gomphonema designatum E. Reichardt	*	5	1
14	31.39	NINC	-	Nitzschia inconspicua Grunow	*	2.8	1
8	17.94	GBOB	-	Gomphonema bourbonense E. Reichardt et Lange-Bertalot	*	3.8	2
5	11.21	AMUS	-	Adlafia muscora (Kociolek & Reviers) Moser Lange-Bertalot & Metzeltin	*	5	1
3	6.73	NVDS	-	Navicula(dicta) seminulum (Grunow) Lange Bertalot	*	1.5	2
3	6.73	NIFR	-	Nitzschia frustulum(Kützing)Grunow var.frustulum	*	2	1
3	6.73	NZSS	-	Nitzschia species		1	2
2	4.48	NARV	-	Navicula arvensis Hustedt	*	3	1
2	4.48	CPLE	CEUG	Cocconeis placentula Ehrenberg var.euglypta (Ehr.) Grunow	*	3.6	1
2	4.48	NCXM	-	Navicula cruxmeridionalis Metzeltin, Lange-Bertalot & Garcia-Rodriguez		3	2
1	2.24	NSYM	-	Navicula symmetrica Patrick	*	3	2
1	2.24	NPAL	-	Nitzschia palea (Kützing) W.Smith	*	1	3
1	2.24	EORU	ERTT	Eolimna ruttneri (Hustedt) Lange-Bertalot & Monnier	*	4.5	2
1	2.24	NNGO	-	Naviculadicta nanogomphonema Lange-Bertalot & Rumrich	*	3.4	1
1	2.24	NROS	-	Navicula rostellata Kützing	*	3	3

Asconit Consultants - Anne Eulin-Garrigue

RAPPORT FINAL Page 97/135

TDI

55.1

IBD

17.2

DI-CH

7.6

OMNIDIA 5.3 du 01/03/2009

 N° PREP
 20100832210101

 BASSIN
 MARTINIQUE

 SITE
 FOND BAISE

 RIVIERE
 CARBET

 DATE
 25/05/2010

 CODE HYDROLOGIQUE
 08322101

 PARTICULARITES E1759 - AEG - Surveillance

EPI-D

10.4

IPS SLA DESCY IDAP GENRE CEE SHE WAT

16.5 13.3 15.1 10.5 13.1 15.3 8.8 14.3

IDP

LOBO

9.5

NOTES DE QUALITE / 20

NB d'espèces 34 Effectif 431	Diversité 3.25 Equitabilité 0.64	Nombre de genres 20

TID

8.4

SID

12.1

Nomb	re o/oo	Code	ou	Désignation "	: taxon IBD	IPS S	IPS V
155	359.63	AMUS		Adlafia muscora (Kociolek & Reviers) Moser Lange-Bertalot & Metzeltin	*	5	1
71	164.73	CPLE	CEUG	Cocconeis placentula Ehrenberg var.euglypta (Ehr.) Grunow	*	3.6	1
56	129.93	GDES	-	Gomphonema designatum E. Reichardt	*	5	1
32	74.25	ASHU	ADSH	Achnanthes subhudsonis Hustedt	*	5	2
23	53.36	GBOB	-	Gomphonema bourbonense E. Reichardt et Lange-Bertalot	*	3.8	2
19	44.08	EOMI	SEMN	Eolimna minima(Grunow) Lange-Bertalot	*	3	1
9	20.88	NINK	-	Navicula incarum Lange-Bertalot & Rumrich		3.6	1
6	13.92	ADMI	-	Achnanthidium minutissimum (Kützing) Czarnecki	*	5	1
6		NSYM		Navicula symmetrica Patrick	*	3	2
6		NCXM		Navicula cruxmeridionalis Metzeltin, Lange-Bertalot & Garcia-Rodriguez	!	3	
5		NQDJ	-	Navicula quasidisjuncta Lange-Bertalot & Rumrich		4	1
5	11.60		-	Nitzschia inconspicua Grunow	*	2.8	1
5		DENT	-	DENTICULA F.T. Kützing		3.7	2.3
4	9.28		-	Nitzschia frustulum(Kützing)Grunow var.frustulum	*	2	1
3		EGRC		Epithemia gracilis Moser. Lange-Bertalot & Metzeltin			
2		DDSP		Diadesmis species		3	1
2		FGOU	-	Fragilaria goulardii (Brébisson) Lange-Bertalot	*	4	2
2		RSIN	-	Reimeria sinuata (Gregory) Kociolek & Stoermer	*	4.8	1
2		EORU		Eolimna ruttneri (Hustedt) Lange-Bertalot & Monnier	*	4.5	2
2		FMER	-	Fallacia meridionalis Metzeltin Lange-Bertalot & Garcia-Rodriguez		3.5	1
2		ADCT		Achnanthidium catenatum (Bily & Marvan) Lange-Bertalot	*	4.5	2
2		EOSP		Eolimna species		2.8	1
1		DCOT	-	Diadesmis contenta (Grunow ex V. Heurck) Mann	*	3.5	1
1	2.32		-	Nitzschia sp.1		1	2
1		DCOF		Diadesmis confervacea Kützing var. confervacea	*	1	3
1		NROS		Navicula rostellata Kützing	*	3	3
1		PLFR		Planothidium frequentissimum(Lange-Bertalot)Lange-Bertalot	*	3.4	1
1		NPAL		Nitzschia palea (Kützing) W.Smith	*	1	3
1		NNGO		Naviculadicta nanogomphonema Lange-Bertalot & Rumrich	*	3.4	1
1		EUPA	-	Eunotia paludosa Grunow in Van Heurok var. paludosa	*	5	1
1		GOPP		GOMPHOSPHENIA Lange-Bertalot		2.2	2
1			-	Nitzschia species		1	2
1		CMLF	-	Craticula molestiformis (Hustedt) Lange-Bertalot	*	2	1
1	2.32	ASTG	-	Amphora subturgida Hustedt	*	2	2

Asconit Consultants - Anne Eulin-Garrigue

RAPPORT FINAL Page 98/135

OMNIDIA 5.3 du 01/03/2009

 N° PREP BASSIN
 20100830210101

 SITE
 BOURG SCHOELCHER

 RIVIERE
 CASE NAVIRE

 DATE
 25/05/2010

 CODE HYDROLOGIQUE
 08302101

 PARTICULARITES E1759 - AEG - Enquête

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
10.4	12.9	12.0	6.9	10.7	9.6	7.1	12.5	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
82.2	14.6	3.4	8.7	6.1	12.8	9.4	4.5	

NOTES DE QUALITE / 20

	NB d'esp E	pèces ffectif	38 401		Diversité Equitabilité	4.01 0.76	Nombre de genres	22		
Nomb	re o/oo	Code	ou	Désignati	on			: taxon IBD	IPS S	IPS V
73	182.04	GDES	-	Gomphor	ema designatum E.	Reichardt		*	5	1
63	157.11	NINC	-	Nitzschia	inconspicua Grunow	,		*	2.8	1
58	144.64	GPAR	-	Gomphor	ema parvulum (Kütz	ing) Kützing var. pa	rvulum f. parvulum	*	2	1
35		ASHU			es subhudsonis Hus	tedt		*	5	2
22		FFON		_	fonticola Hustedt				2	3
18		DCOF	-		s confervacea Kützin			*	1	3
14		NPAL	-		palea (Kützing) W.S			*	1	3
12					s placentula Ehrenbe	erg var.euglypta (Eh	r.) Grunow	*	3.6	1
11		GOMS			ema species				3.6	2
9		NCXM					ot & Garcia-Rodriguez		3	2
9		LGOE			oeppertiana (Bleisch			*	2	2
9		ADMI			idium minutissimum			*	5	1
8	19.95				ninima(Grunow) Lan			*	3	1
6		NNGO			licta nanogomphone	ma Lange-Bertalot 8	& Rumrich	*	3.4	1
6		NSYM			symmetrica Patrick			*	3	2
5	12.47		-		erifuga Lange-Bertak			*	2	3
5		EORU			uttneri (Hustedt) Lan		ier		4.5	2
4		FGOU GBOB			goulardii (Brébisson		- D-d-l-d	*	4 3.8	2
4		DIAS			ema bourbonense E	. Reichardt et Lang	е-вепают	*	3.8	1
-		FMER	-	Diatoma :	•	Laura Dartalat 8 C	Sancia Davidiana		3.5	1
3		NAMP			neridionalis Metzeltin amphibia Grunow f.a		arcia-Rodriguez	*	3.5	2
2		PLFR			ium frequentissimum		ano Bortalot	*	3.4	1
2		AMUS					ige-Bertalot & Metzeltin	*	5.7	- 1
2		DCOT			s contenta (Grunow			*	3.5	- 1
2		GOPP			SPHENIA Lange-Be			-	2.2	2
1		TDEB			la debilis Arnott ex C			*	2.2	2
1		NQDJ			guasidisjuncta Lange		,		4	1
- 1		GNOD			a nodiferum (Grunov			*	4	3
1		NINK	-		incarum Lange-Berta				3.6	1
1		ASTG	_		subturgida Hustedt			*	2	2
1		MAPE	MPMI		a atomus var. permi	tis (Hustedt) Lange-	Bertalot	*	2.3	1
1		LMUT	-		nutica (Kützing) D.G.			*	2	2
1		EOLI	-		Lange-Bertalot & S				2.8	2
1	2.49	ARPT	-		es rupestoides Hohn			*	4.8	
1	2.49	PRBU	-		ium robustius (Huste			*	4.6	1
1	2.49	HAMP	-		ia amphioxys (Ehr.) (Grunow 1880	*	1.5	3
1	2.49	SMNS	-	Seminavi					2.5	1

Asconit Consultants - Anne Eulin-Garrigue

RAPPORT FINAL Page 99/135

OMNIDIA 5.3 du 01/03/2009

N° PREP Bassin 20100880310101 MARTINIQUE SITE RIVIERE PETIT BOURG COULISSES DATE 20/05/2010
CODE HYDROLOGIQUE 08803101
PARTICULARITES E1759 - AEG - Surveillance et Opérationnel

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
6.6	13.0	11.1	5.8	6.5	4.4	5.9	9.3	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
91.9	7.8	4.6	7.7	7.0	12.3	9.3	3.8	

NOTES DE QUALITE / 20

	NB d'es E	pèces ffectif	38 400		Diversité Equitabilité	3.51 0.67	Nombre de genres	18		
Nomb	re o/oo	Code	ou	Désignati	ion		1	taxon IBD	IPS S	IPS V
	260.00	GPAR	-		nema parvulum (Kütz			*	2	1
89	222.50	NIFR	-		frustulum(Kützing)G			*	2	1
38	95.00	NNGO	-		licta nanogomphone		& Rumrich	*	3.4	1
33		NPAL	-		palea (Kützing) W.S			*	1	3
28		NINC	-		inconspicua Grunov	1		*	2.8	1
28		SMNS	-		s species				2.5	1
14		ESBM	-	Eolimna s	subminuscula (Mang	uin) Moser Lange-B	ertalot & Metzeltin	*	2	1
7	17.50	GGRA	-	Gomphor	nema gracile Ehrenb	erg		*	4.2	1
5	12.50	NFIC	-	Nitzschia	filiformis var.confert	a (Richter) Lange-Be	ertalot	*	3.2	2
4	10.00	SIDE	-	Simonser	nia delognei Lange-B	ertalot		*	3	2
4	10.00	ASTG	-	Amphora	subturgida Hustedt			*	2	2
4	10.00	NROS	-	Navicula	rostellata Kützing			*	3	3
3	7.50	NSYM	-	Navicula	symmetrica Patrick			*	3	2
3	7.50	EORU	ERTT	Eolimna r	uttneri (Hustedt) Lar	ige-Bertalot & Monn	ier	*	4.5	2
3	7.50	NVDS	-	Navicula(dicta) seminulum (G	runow) Lange Berta	lot	*	1.5	2
3	7.50	NINT	-	Nitzschia	intermedia Hantzsch	n ex Cleve & Grunov	V	*	1	3
2	5.00	TAPI	-	Tryblione	lla apiculata Gregory	,		*	2.4	2
2	5.00	PLFR	-	Planothid	ium frequentissimum	n(Lange-Bertalot)Lar	nge-Bertalot	*	3.4	1
2	5.00	PRBU	-	Planothid	ium robustius (Huste	edt) Lange-Bertalot		*	4.6	1
2	5.00	ASHU	ADSH	Achnanth	es subhudsonis Hus	tedt		*	5	2
2	5.00	NCOA	TCOA	Nitzschia	coarctata Grunow				2	3
2	5.00	EOLI	-	EOLIMNA	A Lange-Bertalot & S	chiller			2.8	2
2	5.00	GAFF	-	Gomphor	nema affine Kützing			*	4	3
2	5.00	FSAP	-	Fistulifera	saprophila (Lange-l	Bertalot & Bonik) Lai	nge-Bertalot	*	2	1
1	2.50	CPLE	CEUG	Cocconei	s placentula Ehrenb	erg var.euglypta (Eh	r.) Grunow	*	3.6	1
1	2.50	BPAX	-	Bacillaria	paxillifera(O.F. Mülle	er) Hendey var.paxil	lifera	*	2	3
1	2.50	GDES	-	Gomphor	nema designatum E.	Reichardt		*	5	1
1	2.50	GOMS	-	Gomphor	nema species				3.6	2
1	2.50	EOM	SEMN	Eolimna r	minima(Grunow) Lan	ge-Bertalot		*	3	1
1	2.50	UBIC	-	Ulnaria bi	iceps (Kützing) Com	père		*	3	1
1	2.50	GOPP	-	GOMPHO	DSPHENIA Lange-B	ertalot			2.2	2
1	2.50	FFON	STAB	Fragilaria	fonticola Hustedt				2	3
1	2.50	NGRE	-	Navicula	gregaria Donkin			*	3.4	1
1		NFON	-	Nitzschia	fonticola Grunow in	Cleve et Möller		*	3.5	1
1	2.50	DCOT	-	Diadesmi	s contenta (Grunow	ex V. Heurck) Mann	1	*	3.5	1
1	2.50	TLEV	-	Tryblione	lla levidensis Wm. S	mith		*	2	2
1	2.50	DCOF	-		s confervacea Kützir			*	1	3
	2.50	MZCC		MD4		-				2

Nitzschia species

Asconit Consultants - Anne Eulin-Gamque

NZSS

2.50

Page 100/135 RAPPORT FINAL

OMNIDIA 5.3 du 01/03/2009

 N° PREP
 20100822510101

 BASSIN
 MARTINIQUE

 SITE
 GRAND GALION

 RIVIERE
 GALION

 DATE
 20/05/2010

 CODE HYDROLOGIQUE
 08225101

 PARTICULARITES E1759 - AEG - Surveillance et Opérationnel

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
13.6	15.3	12.4	16.4	9.5	11.5	11.2	13.4	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
44.9	16.0	6.9	12.7	11.9	18.1	9.3	7.5	

NOTES DE QUALITE / 20

	NB d'es	pèces Effectif	28 400	Diversité 3.52 Nombre Equitabilité 0.73	e de genres 13		
Nomb	re o/oo	Code	ou	Désignation	* : taxon IBD	IPS S	IPS V
109	272.50	ADMI	-	Achnanthidium minutissimum (Kützing) Czarnecki	*	5	1
68	170.00	ADCT	-	Achnanthidium catenatum (Bily & Marvan) Lange-Bertalot	*	4.5	2
22	02.50	ECOLL		Franklaria and anti-/Pathianan'i Lanca Bartalat			2

109	272.50	ADMI		Achnanthidium minutissimum (Kützing) Czarnecki	*	5	1
68	170.00	ADCT	-	Achnanthidium catenatum (Bily & Marvan) Lange-Bertalot	*	4.5	2
33	82.50	FGOU	-	Fragilaria goulardii (Brébisson) Lange-Bertalot	*	4	2
32	80.00	GDES	-	Gomphonema designatum E. Reichardt	*	5	1
31	77.50	NCLA	-	Nitzschia clausii Hantzsch	*	2.8	3
24	60.00	GPAR	-	Gomphonema parvulum (Kützing) Kützing var. parvulum f. parvulum	*	2	1
22	55.00	NSYM	-	Navicula symmetrica Patrick	*	3	2
18	45.00	NPAL	-	Nitzschia palea (Kützing) W.Smith	*	1	3
9	22.50	NFIC	-	Nitzschia filiformis var.conferta (Richter) Lange-Bertalot	*	3.2	2
8	20.00	CYMS	-	Cymbella species		4	1
8	20.00	CTRO	-	Cymbella tropica Krammer var. tropica Krammer	*	4	2
6	15.00	NINC	-	Nitzschia inconspicua Grunow	*	2.8	1
5	12.50	ADEU	-	Achnanthidium eutrophilum (Lange-Bertalot)Lange-Bertalot	*	3	1
5	12.50	EOM	SEMN	Eolimna minima(Grunow) Lange-Bertalot	*	3	1
4	10.00	GBOB	-	Gomphonema bourbonense E. Reichardt et Lange-Bertalot	*	3.8	2
3	7.50	NCXM	-	Navicula cruxmeridionalis Metzeltin, Lange-Bertalot & Garcia-Rodriguez		3	2
2	5.00	NZSS	-	Nitzschia species		1	2
2	5.00	NPAE	-	Nitzschia paleacea (Grunow) Grunow in van Heurck	*	2.5	1
2	5.00	EOLI	-	EOLIMNA Lange-Bertalot & Schiller		2.8	2
1	2.50	ESLE	-	Encyonema silesiacum (Bleisch in Rabh.) D.G. Mann	*	5	2
1	2.50	EOSP	-	Eolimna species		2.8	1
1	2.50	TDEB	-	Tryblionella debilis Arnott ex O'Meara	*	2	2
1	2.50	ASHU	ADSH	Achnanthes subhudsonis Hustedt	*	5	2
1	2.50	NLUN	-	Navicula lundii Reichardt	*	4.8	2
1	2.50	FSAP	-	Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot	*	2	1
1	2.50	MAPE	MPMI	Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot	*	2.3	1
1	2.50	ASTG	-	Amphora subturgida Hustedt	*	2	2
1	2.50	NFON	-	Nitzschia fonticola Grunow in Cleve et Möller	*	3.5	1

Asconit Consultants - Anne Eulin-Garrigue

RAPPORT FINAL Page 101/135

OMNIDIA 5.3 du 01/03/2009

N° PREP BASSIN SITE RIVIERE 20100810210101

MARTINIQUE STADE DE GRAND RIVIÈRE GRANDE RIVIÈRE

DATE
CODE HYDROLOGIQUE
PARTICULARITES E1759 - AEG - Surveillance 19/05/2010 08102101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
13.3	14.0	13.9	5.0	8.3	5.6	8.8	11.4	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
80.9	13.6	3.7	7.2	9.2	10.2	10.8	4.7	

NOTES DE QUALITE / 20

	spèces Effectif	25 400	Diversité 2.99 Equitabilité 0.64	Nombre de genres 17
Nombre o/oo	Code	ou	Désignation	* : taxon IBD IPS S IPS
	NINC	-	DENTICULA F.T. Kützing Nitzschia inconspicua Grunow	3.7 2. * 2.8 1

125	312.50	DENT	-	DENTICULA F.T. Kützing		3.7	2.3
90	225.00	NINC	-	Nitzschia inconspicua Grunow	*	2.8	1
72	180.00	ASHU	ADSH	Achnanthes subhudsonis Hustedt	*	5	2
30	75.00	NVDS	-	Navicula(dicta) seminulum (Grunow) Lange Bertalot	*	1.5	2
15	37.50	AMUS	-	Adlafia muscora (Kociolek & Reviers) Moser Lange-Bertalot & Metzeltin	*	5	1
13	32.50	EOMI	SEMN	Eolimna minima(Grunow) Lange-Bertalot	*	3	1
9	22.50	NAMP	-	Nitzschia amphibia Grunow f.amphibia	*	2	2
7	17.50	GDES	-	Gomphonema designatum E. Reichardt	*	5	1
6	15.00	EOSP	-	Eolimna species		2.8	1
5	12.50	ADMI	-	Achnanthidium minutissimum (Kützing) Czarnecki	*	5	1
5	12.50	NCXM	-	Navicula cruxmeridionalis Metzeltin, Lange-Bertalot & Garcia-Rodriguez		3	2
4	10.00	EORU	ERTT	Eolimna ruttneri (Hustedt) Lange-Bertalot & Monnier	*	4.5	2
3	7.50	NPAL	-	Nitzschia palea (Kützing) W.Smith	*	1	3
2	5.00	CPLE	CEUG	Cocconeis placentula Ehrenberg var.euglypta (Ehr.) Grunow	*	3.6	1
2	5.00	NZSS	-	Nitzschia species		1	2
2	5.00	FGOU	-	Fragilaria goulardii (Brébisson) Lange-Bertalot	*	4	2
2	5.00	STHE	-	Stauroneis thermicola (Petersen) Lund	*	5	1
1	2.50	NGRE	-	Navicula gregaria Donkin	*	3.4	1
1	2.50	MAPE	MPMI	Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot	*	2.3	1
1	2.50	NERI	-	Navicula erifuga Lange-Bertalot	*	2	3
1	2.50	ASTG	-	Amphora subturgida Hustedt	*	2	2
1	2.50	DCOT	-	Diadesmis contenta (Grunow ex V. Heurck) Mann	*	3.5	1
1	2.50	NNGO	-	Naviculadicta nanogomphonema Lange-Bertalot & Rumrich	*	3.4	1
1	2.50	FSAP	-	Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot	*	2	1
1	2.50	NUPR	-	Nupela praecipua(Reichardt) Reichardt	*	5	1

Asconit Consultants - Anne Eulin-Garrigue

Page 102/135 RAPPORT FINAL

OMNIDIA 5.3 du 01/03/2009

N° PREP BASSIN 20100852110101 MARTINIQUE SITE RIVIERE GUÉ DE LA DÉSIRADE

LEZARDE DATE 28/05/2010
CODE HYDROLOGIQUE 08521101
PARTICULARITES E1759 - AEG - Surveillance et Opérationnel

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
18.5	17.8	15.1	16.6	13.5	16.2	13.4	18.6	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
47.6	20.0	8.1	15.1	13.2	17.7	12.5	10.7	

NOTES DE QUALITE / 20

47.1	20.	0 8	il .	15.1	13.2	17.7	12.5	10.7						
	NB d'es E	pèces ffectif	16 400			Divers Equitabil		04 51		Non	nbre de genres	10		
Nomb	re o/oo	Code	ou	Désig	nation							* : taxon IBD	IPS S	IPS V
	632.50	GDES	-			designatu						*	5	1
63	157.50	ADMI	-	Achna	anthidium	minutissi	mum (Küt	zing) Czarr	necki			*	5	1
13	32.50	ASHU	ADSH	Achna	anthes su	ibhudsonis	s Hustedt					*	5	2
11	27.50	GBOB	-					ichardt et l				*	3.8	2
11	27.50	GPAR	-	Gomp	honema	parvulum	(Kützing)	Kützing va	r. pan	vulun	n f. parvulum	*	2	1
10	25.00	CTRO	-					pica Kramı				*	4	2
9	22.50	CPLE	CEUG	Cocco	oneis plac	centula Eh	renberg v	ar.euglypta	a (Ehr.	:) Gru	wonu	*	3.6	1
7	17.50	EOM	SEMN			a(Grunow						*	3	1
6	15.00	FGOU	-	Fragil	aria gouli	ardii (Bréb	isson) La	nge-Bertalo	ot			*	4	2
5	12.50	NINC	-	Nitzso	chia incor	nspicua Gr	runow					*	2.8	1
3	7.50	EORU	ERTT	Eolim	na ruttne	ri (Husted	t) Lange-E	Bertalot & N	/lonnie	er		*	4.5	2
3	7.50	EOSP	-	Eolim	na specie	25							2.8	1
2	5.00	CYMS	-	Cymb	ella spec	ies							4	1
2	5.00	AMUS	-	Adlafi	a muscoi	ra (Kociole	ek & Revie	ers) Moser	Lange	e-Bert	talot & Metzelti	n *	5	1
1	2.50	NVDA	-	Navio	ula vanda	amii Scho	eman & A	rchibald va	r. van	damii	i	*	3	1
1	2.50	ADCT	-	Achna	anthidium	catenatu	m (Bily &	Marvan) La	inge-E	3ertal	lot	*	4.5	2

Asconit Consultants - Anne Eulin-Garrigue

Page 103/135 RAPPORT FINAL

OMNIDIA 5.3 du 01/03/2009 1

 N° PREP
 20100850110101

 BASSIN
 MARTINIQUE

 SITE
 PALOURDE LEZARDE

 RIVIERE
 LEZARDE

DATE 28/04/2010
CODE HYDROLOGIQUE 08501101
PARTICULARITES E1759 - AEG - Surveillance/Référence

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
19.3	19.9	15.2	19.9	13.4	17.9	16.8	18.8	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
33.0	20.0	14.5	17.6	15.2	20.0	15.3	15.4	

NOTES DE QUALITE / 20

NB d'espèces 13 Effectif 402	Diversité 1.75 Equitabilité 0.47	Nombre de genres 8						

Nomb	re o/oo	Code	ou	Désignation	* : taxon IBD	IPS S	IPS V
206	512.44	ADMI		Achnanthidium minutissimum (Kützing) Czarnecki	*	5	1
146	363.18	GDES	-	Gomphonema designatum E. Reichardt	*	5	1
13	32.34	GLEP	-	Gomphonema lepidum Fricke	*	4	3
12	29.85	GEXL	-	Gomphonema exilissimum(Grun.) Lange-Bertalot & Reichardt	*	5	1
8	19.90	ADCT	-	Achnanthidium catenatum (Bily & Marvan) Lange-Bertalot	*	4.5	2
6	14.93	FGOU	-	Fragilaria goulardii (Brébisson) Lange-Bertalot	*	4	2
3	7.46	PRBU	-	Planothidium robustius (Hustedt) Lange-Bertalot	*	4.6	1
2	4.98	BNEO	-	Brachysira neoexilis Lange-Bertalot	*	5	1
2	4.98	ASHU	ADSH	Achnanthes subhudsonis Hustedt	*	5	2
1	2.49	DDSP	-	Diadesmis species		3	1
1	2.49	GBOB	-	Gomphonema bourbonense E. Reichardt et Lange-Bertalot	*	3.8	2
1	2.49	UBIC	-	Ulnaria biceps (Kützing) Compère	*	3	1
1	2.49	GPAR	-	Gomphonema parvulum (Kützing) Kützing var. parvulum f. parvulum	*	2	1

Asconit Consultants - Anne Eulin-Garrigue

RAPPORT FINAL Page 104/135

OMNIDIA 5.3 du 01/03/2009 1

N° PREP Bassin 20100850410101 MARTINIQUE PONT BELLE ÎLE SITE RIVIERE PETITE LEZARDE DATE 26/05/2010
CODE HYDROLOGIQUE 08504101
PARTICULARITES E1759 - AEG - Surveillance et Opérationnel

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
14.1	13.6	14.3	6.2	10.3	12.2	6.9	14.6	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
72.0	17.4	4.7	7.2	3.9	9.0	10.1	5.0	

NOTES DE QUALITE / 20

	72.0	17.	4 4	.7	7.2	3.9	9.0	10.1	5.0						
		NB d'es E	pèces ffectif	26 400			Divers Equitabil				Non	nbre de genres	15		
1	Nomb	re o/oo	Code	ou	Désig	gnation						,	taxon IBD	IPS S	IPS V
	141	352.50		-			designatu		hardt				*	5	1
	81	202.50	NINC	-			nspicua Gr						*	2.8	1
	39	97.50	ASHU	ADSH			ibhudsonis						*	5	2
	34	85.00		-					ichardt et L				*	3.8	2
	15	37.50		-	Gom	phonema	parvulum	(Kützing)	Kützing var	r. par	vulun	n f. parvulum	*	2	1
	15	37.50		-					alot & Bonik) Lan	ige-B	ertalot	*	2	1
	13			-			a (Kützing						*	1	3
	13	32.50		SEMN			a(Grunow						*	3	1
	12	30.00							Lange-Berta				*	3.4	1
	5	12.50		-						er Lai	nge-E	Bertalot & Metze	eltin	4	1
	5	12.50	NINK	-	Navio	ula incan	um Lange	-Bertalot 8	& Rumrich					3.6	1
	4	10.00	NSYM	-			netrica Par						*	3	2
	3	7.50		CEUG					ar.euglypta				*	3.6	1
	3	7.50	NFIC	-	Nitzs	chia filifor	mis var.co	inferta (Ri	ichter) Lang	je-Be	rtalot		*	3.2	2
	3	7.50		-		thidium r	obustius (Hustedt) L	.ange-Berta	alot			*	4.6	1
	2	5.00	MAPE	MPMI	Maya	maea ato	mus var.	permitis (H	Hustedt) La	nge-E	Bertal	ot	*	2.3	1
	2	5.00	EOSP	-	Eolim	ına specie	25							2.8	1
	2	5.00	FGOU	-	Fragi	laria goul	ardii (Bréb	isson) La	nge-Bertalo	t			*	4	2
	1	2.50	NCXM	-	Navio	ula cruxn	neridionali	s Metzelti	n, Lange-B	ertalo	ot & G	arcia-Rodrigue	z	3	2
	1	2.50	CMLF	-	Cratic	cula mole	stiformis (Hustedt) L	.ange-Berta	alot			*	2	1
	1	2.50	AMMO	-	Amph	nora mont	tana Krass	ke					*	2.8	1
	1	2.50	NZSS	-	Nitzs	chia spec	ies							1	2
	1	2.50	ESBM	-	Eolim	ına submi	inuscula (I	Manguin)	Moser Lang	ge-Be	ertalot	& Metzeltin	*	2	1
	1	2.50	DDSP	-	Diade	esmis spe	cies	- '						3	1
	1	2.50	NCLA	-	Nitzs	chia claus	sii Hantzso	:h					*	2.8	3
	1	2.50	CYMS	-	Cymb	oella spec	ies							4	1

Asconit Consultants - Anne Eulin-Garrigue

Page 105/135 RAPPORT FINAL

OMNIDIA 5.3 du 01/03/2009

 N° PREP
 20100852110201

 BASSIN
 MARTINIQUE

 SITE
 PONT RN1

 RIVIERE
 LEZARDE

 DATE
 21/05/2010

 CODE HYDROLOGIQUE
 08521102

 PARTICULARITES E1759 - AEG - Surveillance et Opérationnel

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
10.3	14.2	8.0	14.6	8.7	8.0	7.2	11.6	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
58.0	14.8	3.8	12.4	7.9	18.4	7.0	5.8	

NOTES DE QUALITE / 20

NB d'espèces Effectif	28 414	Diver Equitab	3.50 0.73	Nombre de genres	12		
lombre o/oo Code	ou	Désignation		*	: taxon IBD	IPS S	IPS V

Nombi	re o/oo	Code	ou	Désignation	* : taxon IBD	IPS S	IPS V
85	205.31	ADMI		Achnanthidium minutissimum (Kützing) Czarnecki	*	5	1
82	198.07	NPAL	-	Nitzschia palea (Kützing) W.Smith	*	1	3
59	142.51	ADCT	-	Achnanthidium catenatum (Bily & Marvan) Lange-Bertalot	*	4.5	2
45	108.70	GPAR	-	Gomphonema parvulum (Kützing) Kützing var. parvulum f. parvulum	*	2	1
29	70.05	GDES	-	Gomphonema designatum E. Reichardt	*	5	1
18	43.48	FGOU	-	Fragilaria goulardii (Brébisson) Lange-Bertalot	*	4	2
15	36.23	NCXM	-	Navicula cruxmeridionalis Metzeltin, Lange-Bertalot & Garcia-Rodrigue	ez.	3	2
15	36.23	NSYM	-	Navicula symmetrica Patrick	*	3	2
13	31.40	ASHU	ADSH	Achnanthes subhudsonis Hustedt	*	5	2
12	28.99	GBOB	-	Gomphonema bourbonense E. Reichardt et Lange-Bertalot	*	3.8	
8	19.32	NCLA	-	Nitzschia clausii Hantzsch	*	2.8	3
6	14.49	EOM	SEMN	Eolimna minima(Grunow) Lange-Bertalot	*	3	1
5	12.08	EORU	ERTT		*	4.5	2
2	4.83	NCPL	-	Nitzschia capitellata Hustedt in A.Schmidt & al.	*	1	3
2	4.83	EOSP	-	Eolimna species		2.8	1
2		NIBU	-	Nitzschia bulnheimiana (Rabenhorst) H.L.Smith	*	2	1
2	4.83	FFON	STAB	Fragilaria fonticola Hustedt		2	3
2	4.83	NQDJ	-	Navicula quasidisjuncta Lange-Bertalot & Rumrich		4	1
2	4.83	NINC	-	Nitzschia inconspicua Grunow	*	2.8	1
2	4.83	CMLF	-	Craticula molestiformis (Hustedt) Lange-Bertalot	*	2	1
1	2.42	MAPE	MPMI	Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot	*	2.3	1
1	2.42	SMNS	-	Seminavis species		2.5	1
1	2.42	NLUN	-	Navicula lundii Reichardt	*	4.8	2
1	2.42		-	Cymbella species		4	1
1	2.42	NFIC	-	Nitzschia filiformis var.conferta (Richter) Lange-Bertalot	*	3.2	
1	2.42	GOPP	-	GOMPHOSPHENIA Lange-Bertalot		2.2	2
1	2.42	NINK	-	Navicula incarum Lange-Bertalot & Rumrich		3.6	1
1	2.42	NARV	-	Navicula arvensis Hustedt	*	3	1

Asconit Consultants - Anne Eulin-Garrigue

RAPPORT FINAL Page 106/135

OMNIDIA 5.3 du 01/03/2009 1

N° PREP Bassin 20100820310101

MARTINIQUE AMONT CONFLUENCE PIROGUE SITE RIVIERE LORRAIN

DATE
CODE HYDROLOGIQUE
PARTICULARITES E1759 - AEG - Surveillance 20/05/2010 08203101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
14.0	13.1	15.8	12.8	12.8	13.7	8.4	16.1	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
56.2	15.6	7.8	11.3	9.6	9.5	15.1	9.1	

NOTES DE QUALITE / 20

Effectif 400 Equitabilité 0.57

re o/oo	Code	ou	Désignation	' : taxon IBD	IPS S	IPS V
550.00	CPLE	CEUG	Cocconeis placentula Ehrenberg var.euglypta (Ehr.) Grunow	*	3.6	1
100.00	EOMI			*	3	1
77.50	GDES	-	Gomphonema designatum E. Reichardt	*	5	1
47.50	PRBU	-	Planothidium robustius (Hustedt) Lange-Bertalot	*	4.6	1
35.00	ADMI	-	Achnanthidium minutissimum (Kützing) Czarnecki	*	5	1
32.50	NNGO	-	Naviculadicta nanogomphonema Lange-Bertalot & Rumrich	*	3.4	1
22.50	GOMS	-	Gomphonema species		3.6	2
22.50	AMUS	-	Adlafia muscora (Kociolek & Reviers) Moser Lange-Bertalot & Metzelti	n *	5	1
17.50	ASHU	ADSH	Achnanthes subhudsonis Hustedt	*		2
17.50	FGOU	-	Fragilaria goulardii (Brébisson) Lange-Bertalot	*		2
12.50	GOPP	-	GOMPHOSPHENIA Lange-Bertalot		2.2	2
	DCOT	-	Diadesmis contenta (Grunow ex V. Heurck) Mann	*	3.5	1
				Z	_	2
				*		2
		-	Navicula symmetrica Patrick	*	3	2
		-		*		1
			•			2.3
				*		1
				*	_	2
		-	Nitzschia perminuta(Grunow) M.Peragallo	*	4.5	1
		-	Nitzschia species		1	2
		-		*		1
		-		*		1
		-		*		1
2.50	NROS	-	Navicula rostellata Kützing	*	_	3
2.50	NNOT	-	Navicula notha Wallace	*	4.8	1
	550.00 100.00 77.50 35.00 32.50 22.50 17.50 10.00 10.00 7.50 5.00 2.50 2.50 2.50 2.50 2.50 2.50	550.00 CPLE 100.00 EOMI 77.50 GDES 47.50 PRBU 35.00 ADMI 32.50 NNGO 22.50 GOMS 22.50 AMUS 17.50 ASHU 17.50 GOPP 10.00 DCOT 10.00 DCOT 10.00 NCXM 7.50 GBOB 5.00 NSYM 5.00 NINC 5.00 DENT 2.50 ARPT 2.50 ARPT 2.50 NZSS 2.50 ADEU 2.50 NGRE 2.50 NIBU 2.50 NROS	550.00 CPLE CEUG 100.00 EOMI SEMN 77.50 GDES - 47.50 PRBU - 35.00 ADMI - 32.50 NNGO - 22.50 GOMS - 17.50 FGOU - 17.50 FGOU - 12.50 GOPP - 10.00 DCOT - 10.00 NCXM - 7.50 GBOB - 5.00 NSYM - 5.00 NINC - 5.00 NINC - 2.50 ARPT - 2.50 ARPT - 2.50 NZSS - 2.50 NZSS - 2.50 NZSS - 2.50 NJEU -	560.00 CPLE CEUG Cocconeis placentula Ehrenberg var.euglypta (Ehr.) Grunow 100.00 EOMI SEMN Eolimna minima(Grunow) Lange-Bertalot 77.50 GDES - Gomphonema designatum E. Reichardt 47.50 PRBU - Planothidium robustius (Hustedt) Lange-Bertalot 35.00 ADMI - Achnanthidium minutissimum (Kützing) Czarmecki 32.50 NNGO - Naviculadicta nanogomphonema Lange-Bertalot & Rumrich 22.50 GOMS - Gomphonema species 22.50 AMUS - Adlafia muscora (Kociolek & Reviers) Moser Lange-Bertalot & Metzeltin 17.50 FGOU - Fragilaria goulardii (Brébisson) Lange-Bertalot 17.50 GOPP - GOMPHOSPHENIA Lange-Bertalot 10.00 DCOT - Diadesmis contenta (Grunow ex V. Heurck) Mann 10.00 NCXM - Navicula cruxmeridionalis Metzeltin, Lange-Bertalot & Garcia-Rodrigue 7.50 GBOB - Gomphonema bourbonense E. Reichardt et Lange-Bertalot 5.00 NSYM - Navicula symmetrica Patrick 5.00 NINC - Nitzschia inconspicua Grunow 5.00 DENT - DENTICULA F.T. Kützing 2.50 ARPT - Achnanthes rupestoides Hohn 12.50 NZSS - Nitzschia perminuta(Grunow) M.Peragallo 12.50 NZSS - Nitzschia species 12.50 NGRE - Navicula gregaria Donkin 12.50 NIBU - Nitzschia bulnheimiana (Rabenhorst) H.L.Smith 12.50 NIBU - Nitzschia bulnheimiana (Rabenhorst) H.L.Smith 12.50 NROS - Navicula rostellata Kützing	560.00 CPLE CEUG Cocconeis placentula Ehrenberg var.euglypta (Ehr.) Grunow * 100.00 EOMI SEMN Eolimna minima(Grunow) Lange-Bertalot * 77.50 GDES - Gomphonema designatum E. Reichardt * 47.50 PRBU - Planothidium robustius (Hustedt) Lange-Bertalot * 33.00 ADMI - Achnanthidium minutissimum (Kützing) Czarnecki * 32.50 NNGO - Naviculadicta nanogomphonema Lange-Bertalot & Rumrich * 22.50 GOMS - Gomphonema species 22.50 AMUS - Adlafía muscora (Kociolek & Reviers) Moser Lange-Bertalot & Metzeltin * 17.50 FGOU - Fragilaria goulardii (Brébisson) Lange-Bertalot * 12.50 GOPP - GOMPHOSPHENIA Lange-Bertalot 10.00 DCOT - Diadesmis contenta (Grunow ex V. Heurck) Mann * 10.00 NCXM - Navicula cruxmeridionalis Metzeltin, Lange-Bertalot & Garcia-Rodriguez 7.50 GBOB - Gomphonema bourbonense E. Reichardt et Lange-Bertalot * 5.00 NSYM - Navicula symmetrica Patrick * 5.00 NINC - Nitzschia inconspicua Grunow * 5.00 DENT - DENTICULA F.T. Kützing 2.50 ARPT - Achnanthes rupestoides Hohn * NZSS - Nitzschia perminuta(Grunow) M.Peragallo * NZSS - Nitzschia species 2.50 NZSS - Nitzschia species 2.50 NGRE - Navicula gregaria Donkin * Navicula gregaria Donkin * Navicula rostellata Kützing * NROS - NROS	560.00 CPLE CEUG Cocconeis placentula Ehrenberg var.euglypta (Ehr.) Grunow * 3.6 100.00 EOMI SEMN Eolimna minima(Grunow) Lange-Bertalot * 3 77.50 GDES Gomphonema designatum E. Reichardt * 5 47.50 PRBU Planothidium robustius (Hustedt) Lange-Bertalot * 4.6 35.00 ADMI Achnanthidium minutissimum (Kützing) Czarnecki * 5 32.50 NNGO Naviculadicta nanogomphonema Lange-Bertalot & Rumrich * 3.4 22.50 GOMS Gomphonema species 3.6 22.50 AMUS - Adlafia muscora (Kociolek & Reviers) Moser Lange-Bertalot & Metzeltin * 5 17.50 FGOU - Fragilaria goulardii (Brébisson) Lange-Bertalot * 4 17.50 FGOU - Fragilaria goulardii (Brébisson) Lange-Bertalot * 4 12.50 GOPP - GOMPHOSPHENIA Lange-Bertalot * 3.5 10.00 NCXM Navioula sull sull sull sull sull sull sull s

Asconit Consultants - Anne Eulin-Garrigue

Page 107/135 RAPPORT FINAL

OMNIDIA 5.3 du 01/03/2009

N° PREP Bassin 20100820510101 MARTINIQUE SITE RIVIERE SEGUINEAU LORRAIN DATE CODE HYDROLOGIQUE PARTICULARITES E1759 - AEG - Enquête 20/05/2010 08205101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
16.8	13.5	14.4	9.3	13.5	16.0	5.4	17.7	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
62.6	20.0	4.4	13.3	8.5	12.0	7.0	7.3	

NOTES DE QUALITE / 20

- 32	20.			10.0	0.0	12.0	1.0	1.0						
	NB d'espèces 21 Diversité 2.49 Nombre de genres Effectif 402 Equitabilité 0.57								14					
Nomb	re o/oo	Code	ou	Désign	ation							: taxon IBD	IPS S	IPS V
198	492.54	GDES	-	Gomph	onema	designatu	ım E. Reid	chardt				*	5	1
74	184.08	CPLE	CEUG	Coccor	neis plac	centula Er	renberg v	ar.euglypta	a (Ehr	r.) Gru	unow	*	3.6	1
46	114.43	GPAR	-	Gomph	onema	parvulum	(Kützing)	Kützing va	r. par	rvulun	n f. parvulum	*	2	1
21	52.24	ASHU	ADSH	Achnai	nthes su	bhudsoni	s Hustedt	-				*	5	2
15	37.31	ADMI	-	Achnar	nthidium	minutissi	mum (Küt	zing) Czarr	necki			*	5	1
10	24.88	GENT	-	Gomph	onema	entolejum	Ostrup					*	5	3
8	19.90	PRBU	-	Planott	lanothidium robustius (Hustedt) Lange-Bertalot							*	4.6	1
5	12.44	NNGO	-	Navicu	ladicta r	nanogomp	honema l	Lange-Berta	alot 8	k Rum	nrich	*	3.4	1
5	12.44	GOMS	-	Gomph	onema	species							3.6	
5		EOM	SEMN	Eolimn	a minim	a(Grunow	r) Lange-E	Bertalot				*	3	1
3		NSYM	-	Navicu	la symn	netrica Pa	trick					*	3	2
2		CBAC					ow) Cleve					*	4	2
2								rtalot & Rur	mrich	1			4	1
1	2.49					F.T. Kützir	•						3.7	2.3
1	2.49							Bertalot & N	/lonni	ier		*	4.5	2
1	2.49		STAB			cola Huste							2	3
1	2.49		-				ot & Schille	er					2.8	2
1	2.49		-			Wallace						*	4.8	1
1		EUNS	-	Eunotia									5	1
1	2.49		-				ardt) Reic					*	5	1
1	2.49	ESLE	-	Encyor	nema sil	esiacum (Bleisch in	Rabh.) D.0	G. Ma	ann		*	5	2

Asconit Consultants - Anne Eulin-Garrigue

Page 108/135 RAPPORT FINAL

OMNIDIA 5.3 du 01/03/2009

N° PREP Bassin 20100842310101 MARTINIQUE SITE RIVIERE PONT DE CHAINES MADAME DATE 25/05/2010
CODE HYDROLOGIQUE 08423101
PARTICULARITES E1759 - AEG - Surveillance et Opérationnel

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
10.4	14.3	14.8	5.8	4.4	11.5	9.8	11.5	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
88.0	11.0	5.8	7.9	7.3	10.8	11.5	5.1	

DENTICULA F.T. Kützing

ASHU ADSH Achnanthes subhudsonis Hustedt

NOTES DE QUALITE / 20

	NB d'es E	pèces ffectif	33 450		Diversité Equitabilité	2.45 0.49	Nombre de genres	19		
Nomb	re o/oo	Code	ou	Désignati	ion		*	: taxon IBD	IPS S	IPS V
275	611.11	NINC		Nitzschia	inconspicua Grunov	v		*	2.8	1
62	137.78	GBOB	-	Gomphor	nema bourbonense 8	E. Reichardt et Lang	e-Bertalot	*	3.8	2
19	42.22	NCXM	-				ot & Garcia-Rodriguez		3	2
10	22.22	FMER	-	Fallacia n	neridionalis Metzeltir	n Lange-Bertalot & G	arcia-Rodriguez		3.5	1
8	17.78	EOM	SEMN		minima(Grunow) Lar		-	*	3	1
6	13.33	NPAL	-	Nitzschia	palea (Kützing) W.S	Smith		*	1	3
6	13.33	GDES	-	Gomphor	nema designatum E.	Reichardt		*	5	1
5	11.11	CPLE	CEUG	Cocconei	s placentula Ehrenb	erg var.euglypta (Eh	r.) Grunow	*	3.6	1
5	11.11	FSAP	-	Fistulifera	saprophila (Lange-	Bertalot & Bonik) La	nge-Bertalot	*	2	1
4	8.89	NDCM	-	Naviculad	licta cosmopolitana	Lange-Bertalot	-	*	2	1
4	8.89	NVDS	-	Navicula(dicta) seminulum (G	runow) Lange Berta	lot	*	1.5	2
4	8.89	EOSP	-	Eolimna s	species				2.8	1
4	8.89	GOPP	-	GOMPHO	SPHENIA Lange-B	ertalot			2.2	2
4	8.89	NAMP	-	Nitzschia	amphibia Grunow f.	amphibia		*	2	2
4	8.89	NNGO	-	Naviculad	licta nanogomphone	ma Lange-Bertalot 8	& Rumrich	*	3.4	1
4	8.89	NSYM	-	Navicula	symmetrica Patrick	-		*	3	2
4	8.89	ASTG	-	Amphora	subturgida Hustedt			*	2	2
2	4.44	ESBM	-	Eolimna s	subminuscula (Mang	uin) Moser Lange-B	ertalot & Metzeltin	*	2	1
2	4.44	GPAS	GSPP	Gomphor	nema parvulum var.p	arvulum f.saprophilu	ım Lange-Bert.&Reich	ardt *	2	1
2	4.44	MAPE	MPMI	Mayamae	a atomus var. perm	itis (Hustedt) Lange-	Bertalot	*	2.3	1
2	4.44	ADMI	-	Achnanth	idium minutissimum	(Kützing) Czarnecki		*	5	1
2	4.44	DCOF	-	Diadesmi	s confervacea Kützi	ng var. confervacea		*	1	3
2	4.44	NINK	-	Navicula	incarum Lange-Bert	alot & Rumrich			3.6	1
1	2.22	PRBU	-	Planothid	ium robustius (Huste	edt) Lange-Bertalot		*	4.6	1
1		RGBL	-	Rhopalod	lia gibberula (Ehrent	perg) O.Muller		*	5	3
1	2.22	TDEB	-	Tryblione	lla debilis Arnott ex (O'Meara		*	2	2
1	2.22	NERI	-	Navicula	erifuga Lange-Berta	lot		*	2	3
1	2.22	ADCT	-	Achnanth	idium catenatum (Bi	ily & Marvan) Lange-	Bertalot	*	4.5	2
1	2.22	NQDJ	-	Navicula	quasidisjuncta Lang	e-Bertalot & Rumrich	1		4	1
1	2.22	GPAR	-	Gomphor	nema parvulum (Küt:	zing) Kützing var. pa	rvulum f. parvulum	*	2	1
1		CHSP	-	Chamaep	innularia sp.				5	1
	0.00	A CT III	ADOLL	A - I H	and an electrical and a little of	at a alt			-	

Asconit Consultants - Anne Eulin-Garrigue

5 2

2.3

2.22

2.22 DENT -

Page 109/135 RAPPORT FINAL

OMNIDIA 5.3 du 01/03/2009

N° PREP Bassin 20100841210201 MARTINIQUE SITE RIVIERE PONT DE MONTGÉRALD MONSIEUR DATE CODE HYDROLOGIQUE PARTICULARITES E1759 - AEG - Enquête 25/05/2010 08412102

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
10.0	12.4	12.8	7.0	11.2	9.6	4.9	10.9	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
82.8	13.8	3.4	6.9	5.8	8.0	8.1	5.1	

NOTES DE QUALITE / 20

82.8	13.	8 3	3.4	6.9	5.8	8.0	8.1	5.1							
	NB d'es E	pèces ffectif	46 400			Divers Equitabil				Non	nbre de genres	21			
Nombre	0/00	Code	ou	Dési	gnation							: taxo	on IBD	IPS S	IPS V
70	175.00	GDES	-	Gom	phonema	designatu	ım E. Reio	hardt					*	5	1
	127.50		-						r. parv	ulun	n f. parvulum		*	2	1
36	90.00						r) Lange-B						*	3	1
28		NNGO						.ange-Berta	alot & F	Rum	rich		*	3.4	1
	65.00		-		chia incor				/Fb- \				*	2.8	1
24 24	60.00	NCXM						ar.euglypta				_	*	3.6	1 2
17	42.50		-) W.Smith		ertailot	a G	iarcia-Rodrigue	Z	*	1	3
12	30.00							w) Lange B	ortalot				*	1.5	2
11	27.50		-					. Heurck) N					*	3.5	1
8	20.00		_					lot & Bonik		e-B	ertalot		*	2	1
7	17.50		-				-	r. conferva					*	1	3
7	17.50		-		cula arven								*	3	1
6	15.00	NSYM	-	Navio	cula symm	etrica Par	trick						*	3	2
6	15.00	MAPE	MPM	II Maya	amaea ato	mus var.	permitis (H	Hustedt) La	nge-Be	ertal	ot		*	2.3	1
6	15.00	NDCM	-					e-Bertalot	-				*	2	1
6	15.00	NDIF	-	Navi	cula difficil	lima Hust	edt						*	5	1
5	12.50		ADS		anthes su								*	5	2
5	12.50		-		cula salini								*	2	2
5		FFON		_	ilaria fontic									2	3
4	10.00		-		cula erifug								*	2	3
3		GBOB						ichardt et L		Bert	alot		*	3.8	2
3		CMLF	-				Husteat) L	.ange-Berta	HOT				*	2	1
3		EOSP GBPA	-		nna specie			figura Mos	or Land	ao 0	Cortalet 9 Metar	dition		2.8	1
2		PRBU	-					ange-Berta		ge-c	Bertalot & Metze	aun	*	4.6	1
2		ESBM						•		talet	& Metzeltin		*	2.0	- 1
2		EORU						Bertalot & N			o weizeiiii		*	4.5	2
ī		NGRE			cula grega			ocitator or in	ioi ii ii ci				*	3.4	ī
1		NINK	-				-Bertalot 8	Rumrich						3.6	1
1	2.50	EBMU	EMU						ange-B	ierta	lot Norpel & All	e	*	5	2
1		COCS			oneis spe				•					3.5	2
1	2.50	ADCT	-	Achn	anthidium	catenatu	m (Bily & I	Marvan) La	nge-Be	ertal	ot		*	4.5	2
1	2.50	NNOT	-	Navi	cula notha	Wallace							*	4.8	1
1	2.50	ARPT	-	Achn	anthes ru	pestoides	Hohn						*	4.8	1
1		SMNS			inavis spe									2.5	1
1		NSGG						talot & Run	nrich						_
1		EOLI	-			-	ot & Schille							2.8	2
1		ADMI	-					zing) Czarr	iecki				*	5	1
1		GNOD			-		irunow) Re						*	4	3
1		NQDJ	-			disjuncta	Lange-Bei	rtalot & Rur	mrich					4	1
1		DIAS			ma sp.	sulata (Ge	unow)Gar	now in V.H	ourok				*	2.2	2
1		LMUT	-				unow)Gru) D.G. Mar		eurck				*	2.2	2
1		FMER	-					nn ge-Bertalot	2 Gar	reiz	Podriguez		*	3.5	1
1		NUPR					ardt) Reid		a Gai	Old*	Todinguez		*	5.5	- 1
	2.00		_	respe	procop	and residen	araty reciti	To the second					-		

Page 110/135 RAPPORT FINAL

OMNIDIA 5.3 du 01/03/2009

 N° PREP BASSIN
 20100882410101

 SITE
 DORMANTE

 RIVIERE
 OMAN

 DATE
 21/05/2010

 CODE HYDROLOGIQUE
 08824101

 PARTICULARITES E1759 - AEG - Surveillance et Opérationnel

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
12.9	14.3	15.1	5.8	6.2	14.1	10.3	13.9	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
78.4	15.4	6.4	8.3	8.5	11.8	11.8	5.6	

NOTES DE QUALITE / 20

NB d'espèces 16 Effectif 401	Diversité 2.07 Equitabilité 0.52	Nombre de genres 10
---------------------------------	-------------------------------------	---------------------

Nombr	e o/oo	Code	ou	Désignation '	taxon IBD	IPS S	IPS V
220	548.63	NINC	-	Nitzschia inconspicua Grunow	*	2.8	1
104	259.35	GDES	-	Gomphonema designatum E. Reichardt	*	5	1
16	39.90	CPLE	CEUG	Cocconeis placentula Ehrenberg var.euglypta (Ehr.) Grunow	*	3.6	1
14	34.91	GBOB	-	Gomphonema bourbonense E. Reichardt et Lange-Bertalot	*	3.8	2
11	27.43	ASHU	ADSH	Achnanthes subhudsonis Hustedt	*	5	2
7	17.46	SMNS	-	Seminavis species		2.5	1
6	14.96	NNGO	-	Naviculadicta nanogomphonema Lange-Bertalot & Rumrich	*	3.4	1
5	12.47	GBPA	-	Gomphonema brasiliense ssp.pacificum Moser Lange-Bertalot & Metze	eltin	4	1
5	12.47	GOMS	-	Gomphonema species		3.6	2
4	9.98	NPAL	-	Nitzschia palea (Kützing) W.Smith	*	1	3
2	4.99	PRBU	-	Planothidium robustius (Hustedt) Lange-Bertalot	*	4.6	1
2	4.99	FMER	-	Fallacia meridionalis Metzeltin Lange-Bertalot & Garcia-Rodriguez		3.5	1
2	4.99	NIFR	-	Nitzschia frustulum(Kützing)Grunow var.frustulum	*	2	1
1	2.49	CPLA	-	Cocconeis placentula Ehrenberg var. placentula	*	4	1
1	2.49	ASTG	-	Amphora subturgida Hustedt	*	2	2
1	2.49	NERI	-	Navicula erifuga Lange-Bertalot	*	2	3

Asconit Consultants - Anne Eulin-Garrigue

RAPPORT FINAL Page 111/135

OMNIDIA 5.3 du 01/03/2009

 N° PREP
 20100853310101

 BASSIN
 MARTINIQUE

 SITE
 BRASSERIE LORRAINE

 RIVIERE
 PETITE RIVIÈRE

 DATE
 26/05/2010

 CODE HYDROLOGIQUE
 08533101

 PARTICULARITES E1759 - AEG - Surveillance ACER

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
10.6	13.0	12.9	6.6	9.5	10.3	5.1	12.2	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
75.1	14.7	4.0	6.3	4.2	10.4	7.8	4.5	

NOTES DE QUALITE / 20

NB d'esp Ef	èces fectif	31 420			3.82 0.77	Nombre de genres	15		
Nombre o/oo	Code	ou	Désignati	on		*	: taxon IBD	IPS S	IPS V
99 235.71	GDES	-	Gomphor	ema designatum E. R	eichardt		*	5	1

e 0/00	Code	ou	Designation	. taxon ibb	IFSS	IL9 A
235.71	GDES		Gomphonema designatum E. Reichardt	*	5	1
173.81	GBOB	-	Gomphonema bourbonense E. Reichardt et Lange-Bertalot	*	3.8	2
90.48	NINC	-	Nitzschia inconspicua Grunow	*	2.8	1
90.48	NPAL	-	Nitzschia palea (Kützing) W.Smith	*	1	3
57.14	EOMI	SEMN	Eolimna minima(Grunow) Lange-Bertalot	*	3	1
42.86	FSAP	-	Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot	*	2	1
35.71	GPAR	-	Gomphonema parvulum (Kützing) Kützing var. parvulum f. parvulum	*	2	1
33.33	SMNS	-	Seminavis species		2.5	1
28.57	NCLA	-	Nitzschia clausii Hantzsch	*	2.8	3
23.81	ESBM	-	Eolimna subminuscula (Manguin) Moser Lange-Bertalot & Metzeltin	*	2	1
21.43	NINK	-	Navicula incarum Lange-Bertalot & Rumrich		3.6	1
19.05	NVDS	-	Navicula(dicta) seminulum (Grunow) Lange Bertalot	*	1.5	2
16.67	NNGO	-	Naviculadicta nanogomphonema Lange-Bertalot & Rumrich	*	3.4	1
16.67	NCXM	-	Navicula cruxmeridionalis Metzeltin, Lange-Bertalot & Garcia-Rodriguez		3	2
16.67	NSYM	-	Navicula symmetrica Patrick	*		2
11.90	ADMI	-	Achnanthidium minutissimum (Kützing) Czarnecki	*		1
9.52	EOLI	-	EOLIMNA Lange-Bertalot & Schiller		2.8	2
9.52	MAYA	-	MAYAMAEA Lange-Bertalot		3	1
		MPMI	Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot	*		1
9.52	EOSP	-	Eolimna species			1
		ERTT	Eolimna ruttneri (Hustedt) Lange-Bertalot & Monnier	*		2
				*		2
		-		*		1
		-		*		2
						3
		-	, ,	*		1
		-		*		1
		-		*		1
		-	, , ,	*		2
				*	4	2
2.38	FMER	-	Fallacia meridionalis Metzeltin Lange-Bertalot & Garcia-Rodriguez		3.5	1
	235.71 173.81 90.48 90.48 90.48 57.14 42.86 35.71 33.33 28.57 21.43 19.05 16.67 16.67 11.90 9.52 9.52 9.52 9.52 9.52 9.52 7.14 7.14 4.76 4.76 4.76 4.76 4.76 4.238 2.38	235.71 GDES 173.81 GBOB 90.48 NINC 90.48 NPAL 57.14 EOMI 42.86 FSAP 35.71 GPAR 33.33 SMNS 28.57 NCLA 23.81 ESBM 21.43 NINK 19.05 NVDS 16.67 NCXM 16.67 NCXM 11.90 ADMI 9.52 EOLI 9.52 MAYA 9.52 MAPE 9.52 EOSP 7.14 EORU 7.14 ASTG 7.14 NIFR 4.76 SIDE 4.76 FFON 4.76 AMUS 2.38 CMFN 2.38 NFIC 2.38 FGOU	235.71 GDES - 173.81 GBOB - 90.48 NINC - 90.48 NPAL - 57.14 EOMI SEMN 42.86 FSAP - 35.71 GPAR - 33.33 SMNS - 28.57 NCLA - 23.81 ESBM - 21.43 NINK - 19.05 NVDS - 16.67 NNGO - 16.67 NNGO - 16.67 NSYM - 11.90 ADMI - 9.52 EOLI - 9.52 MAYA - 9.52 FOLI - 9.52 MAYA - 9.53 MAYA - 9.54 MAYA - 9.55 MAYA - 9.55 MAYA - 9.55 MAYA - 9.56 MAYA - 9.57 MAYA - 9.58 MAYA - 9.59 MAYA - 9.50 MAYA - 9.50 MAYA - 9.51 MAYA - 9.52 FOLI - 9.52 MAYA - 9.52 MAYA - 9.53 MAYA - 9.53 MAYA - 9.54 MAYA - 9.55 MAYA - 9.55 MAYA - 9.55 MAYA - 9.52 MAYA - 9.52 MAYA - 9.52 MAYA - 9.53 MAYA - 9.53 MAYA - 9.53 MAYA - 9.53 MAYA - 9.54 MAYA - 9.55 MAYA - 9.56 MAYA - 9.57 MAYA - 9.58 MAYA - 9.59 MAYA - 9.50 MAYA - 9.50 MAYA - 9.51 MAYA - 9.52 MAYA - 9.52 MAYA - 9.53 MAYA - 9.53 MAYA - 9.54 MAYA - 9.55 MAYA - 9.55 MAYA - 9.56 MAYA - 9.57 MAYA - 9.57 MAYA - 9.58 MAYA - 9.59 MAYA - 9.50 MAYA - 9.50 MAYA - 9.50 MAYA - 9.52 MAYA	235.71 GDES - Gomphonema designatum E. Reichardt 173.81 GBOB - Gomphonema bourbonense E. Reichardt et Lange-Bertalot 90.48 NINC - Nitzschia inconspicua Grunow 90.48 NPAL - Nitzschia palea (Kützing) W.Smith 57.14 EOMI SEMN Eolimna minima(Grunow) Lange-Bertalot 42.86 FSAP - Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot 35.71 GPAR - Gomphonema parvulum (Kützing) Kützing var. parvulum f. parvulum 33.33 SMNS - Seminavis species 28.57 NCLA - Nitzschia clausii Hantzsch 23.81 ESBM - Eolimna subminuscula (Manguin) Moser Lange-Bertalot & Metzeltin 19.05 NVDS - Navicula incarum Lange-Bertalot & Rumrich 19.05 NVDS - Navicula incarum Lange-Bertalot & Rumrich 18.67 NNGO - Navicula anogomphonema Lange-Bertalot & Rumrich 18.67 NSYM - Navicula cruxmeridionalis Metzeltin, Lange-Bertalot & Garcia-Rodriguez 16.67 NSYM - Navicula symmetrica Patrick 11.90 ADMI - Achnanthidium minutissimum (Kützing) Czamecki 19.52 EOLI - EOLIMNA Lange-Bertalot & Schiller 9.52 MAYA - MAYAMAEA Lange-Bertalot & Schiller 9.52 MAPE MPMI Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot 9.52 EOSP - Eolimna ruttneri (Hustedt) Lange-Bertalot & Monnier 7.14 ASTG - Amphora subturgida Hustedt 7.14 NIFR - Nitzschia frustulum(Kützing)Grunow var.frustulum 4.76 SIDE - Simonsenia delognei Lange-Bertalot 4.76 FFON STAB Fragilaria fonticola Hustedt 4.76 AMUS - Adlafia muscora (Kociolek & Reviers) Moser Lange-Bertalot & Metzeltin 2.38 NFON - Nitzschia filiformis var.conferta (Richter) Lange-Bertalot 2.38 NFON - Nitzschia filiformis var.conferta (Richter) Lange-Bertalot 2.38 NFIC - Nitzschia filiformis var.conferta (Richter) Lange-Bertalot 2.38 FGOU - Fragilaria goulardii (Brébisson) Lange-Bertalot	235.71 GDES - Gomphonema designatum E. Reichardt * 173.81 GBOB - Gomphonema bourbonense E. Reichardt et Lange-Bertalot * 90.48 NINC - Nitzschia inconspicua Grunow	235.71 GDES Gomphonema designatum E. Reichardt

Asconit Consultants - Anne Eulin-Garrigue

RAPPORT FINAL Page 112/135

OMNIDIA 5.3 du 01/03/2009 1

N° PREP BASSIN SITE RIVIERE 20100881310201 MARTINIQUE AVAL BOURG RIVIÈRE PILOTE PILOTE

21/05/2010 08813102 DATE CODE HYDROLOGIQUE PARTICULARITES E1759 - AEG - Enquête

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
8.8	15.6	1.0	5.7	13.6	0.0	9.9	9.2	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
71.1	5.8	7.4	6.6	5.2	4.3	12.3	4.6	

NOTES DE QUALITE / 20

NB d'espèces 19 Effectif 405	Diversité 2.77 Equitabilité 0.85	Nombre de genres 11
_		

Nombr	e o/oo	Code	ou	Désignation	* : taxon IBD	IPS S	IPS V
168	414.81	ABIN	-	Achnanthes brevipes Agardh var.intermedia (Kütz.) Cleve		3	2
65	160.49	SKSP	-	Skeletonema species		1.8	1
46	113.58	LMUT	-	Luticola mutica (Kützing) D.G. Mann	*	2	2
37	91.36	CAGR	-	Cyclotella atomus var. gracilis Genkal & Kiss	*	3	1
36	88.89	FMER	-	Fallacia meridionalis Metzeltin Lange-Bertalot & Garcia-Rodriguez		3.5	1
9	22.22	NIBU	-	Nitzschia bulnheimiana (Rabenhorst) H.L.Smith	*	2	1
8	19.75	LGOE	-	Luticola goeppertiana (Bleisch in Rabenhorst) D.G. Mann	*	2	2
8	19.75	NZSS	-	Nitzschia species		1	2
6	14.81	GOAH	-	Gomphosphenia oahuensis (Hustedt) Lange-Bertalot		3.2	2
4	9.88	ASTG	-	Amphora subturgida Hustedt	*	2	2
3	7.41	NCTV	-	Navicula caterva Hohn & Hellerman	*	3	1
3	7.41	NQDJ	-	Navicula quasidisjuncta Lange-Bertalot & Rumrich		4	1
3	7.41	SMNS	-	Seminavis species		2.5	1
2	4.94	NIS1	-	Nitzschia sp. 1		1	2
2	4.94	NSLC	-	Navicula salinicola Hustedt	*	2	2
2	4.94	NFAS	-	Nitzschia fasciculata (Grunow)Grunow in V.Heurck	*	2.2	2
1	2.47	NREV	-	Nitzschia reversa W.Smith		1.8	2
1	2.47	MAYA	-	MAYAMAEA Lange-Bertalot		3	1
1	2.47	NROS	-	Navicula rostellata Kützing	*	3	3

Asconit Consultants - Anne Eulin-Garrigue

Page 113/135 RAPPORT FINAL

2 2

7.39

4.93

4.93

4.93

2.46

2.46

2.46

2.46

2.46

2.46

2.46

CPLE

EOLI

AMUS

NSYM

CMLF

TDEB

NINK

DENT

GPAR

NCRX GDES

OMNIDIA 5.3 du 01/03/2009

N° PREP BASSIN 20100832910101 MARTINIQUE ANCIEN PONT ST PIERRE SITE

RIVIERE ROXELANE DATE CODE HYDROLOGIQUE 18/05/2010

08329101 PARTICULARITES E1759 - AEG - Surveillance et Opérationnel

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
9.1	15.4	8.6	5.7	4.2	4.4	9.8	9.7	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
95.5	10.0	4.1	6.9	6.3	15.2	9.4	2.5	

EOLIMNA Lange-Bertalot & Schiller

Tryblionella debilis Arnott ex O'Meara

Gomphonema designatum E. Reichardt

Navicula incarum Lange-Bertalot & Rumrich

Navicula symmetrica Patrick

NOTES DE QUALITE / 20

									┙				
	NB d'es	pèces ffectif	21 406		Divers Equitabil			No	mbre de ger	ires 13			
Nomb	re o/oo	Code	ou	Désignation	1					* : ta:	xon IBD	IPS S	IPS V
141	347.29	NAMP		Nitzschia ar	mphibia Grun	ow f.ampl	hibia				*	2	2
95	233.99	NINC	-	Nitzschia in	conspicua G	runow					*	2.8	1
58	142.86	ESBM	-	Eolimna sui	bminuscula (l	Manguin)	Moser Lang	ge-Bertak	ot & Metzeltir	n	*	2	1
52	128.08	ASHU	ADSH	Achnanthes	s subhudsoni:	s Hustedt		-			*	5	2
14	34.48	MAPE	MPMI	Mayamaea	atomus var.	permitis (F	Hustedt) La	nge-Bert	alot		*	2.3	1
9	22.17	EORU	ERTT	Eolimna rut	tneri (Husted	t) Lange-E	Bertalot & N	Monnier			*	4.5	2
7	17.24	NPAL	-	Nitzschia pa	alea (Kützing) W.Smith					*	1	3
6	14.78	NVDS	-	Navicula(di	cta) seminulu	im (Gruno	w) Lange B	Bertalot			*	1.5	2
4	9.85	EOMI	SEMN	Eolimna mi	nima(Grunow	r) Lange-E	Bertalot				*	3	1
4	9.85	FSAP	-	Fistulifera s	aprophila (La	nge-Berta	alot & Bonik) Lange-l	Bertalot		*	2	1

3.6 CEUG Cocconeis placentula Ehrenberg var.euglypta (Ehr.) Grunow 2.8 2 Adlafia muscora (Kociolek & Reviers) Moser Lange-Bertalot & Metzeltin 5 3 Craticula molestiformis (Hustedt) Lange-Bertalot 2 3.6 DENTICULA F.T. Kützing
Gomphonema parvulum (Kützing) Kützing var. parvulum f. parvulum
Navicula crassuliexigua Reichardt 3.7 2.3 5 1

Asconit Consultants - Anne Eulin-Garrigue

Page 114/135 RAPPORT FINAL

Annexe 3 : Inventaires des macroinvertébrés

ACR carême 2010

			Echantillons		Total	Fréq.	F. Cur
TAXONS	Genre ou espèce	M	D1	D2	N	%	%
CI/ Oligochètes		2	2		4	0,94	0,94
HYDRACARIENS			1		1	0,23	0,23
MOLLUSQUES							6,09
CI/ Gastéropodes							6,09
F/ Thiaridae	Thiaridae	1	2	1	4	0,94	
F/ Neritidae	Neritina sp.	14	7	1	22	5,15	
RTHROPODES							92,7
Cl/ Crustacés							11,4
sCl/ Ostracodes				1	1	0,23	0,2
sCl/ Malacostracés							11,2
O/ Décapodes							11,2
F/ Atyidae	Atyidae	4			4	0,94	
	Micratya poeyi	26	9		35	8,20	
	Atya sp.	5			5	1,17	
F/ Palaemonidae	Palaemonidae				0	0,00	
	Macrobrachium sp.	1	3		4	0,94	
F/ Helicopsychidae	Helicopsyche sp.	1	3	1	5	1,17	
F/ Hydropsychidae	Smicridea sp.	46	12	3	61	14,29	
., .,,,	Neotrichia sp.	3			3	0,70	
F/ Philopotamidae	Chimarra sp.	1	4	1	6	1,41	
F/ Xiphocentronidae	Xiphocentron fuscum		1		1	0,23	
O/ Ephéméroptères	Alphocentron ruscum				<u> </u>	0,20	42,8
F/ Baetidae	Americabaetis sp.	57	3	4	64	14,99	42,0
	· ·	2	3	2	1		
F/ Leptohyphidae	Leptohyphidae	7	2	3	7	1,64	
	Tricorythodes griseus	44	49	4	12	2,81	
F/ 0: d	Leptohyphes sp.	44	49	4	97	22,72	
F/ Caenidae	Caenis sp.			2	0	0,00	
0/0///	Caenis femina			3	3	0,70	
O/ Coléoptères							1,6
	Elsianus sp.	2			2	0,47	
	Hexanchorus sp.	4			4	0,94	
F/ Psephenidae	Psephenops sp.		1		1	0,23	
O/ Diptères							18,9
F/ Chironomidae		1		2	3	0,70	
	Harrisius		1		1	0,23	
sF/ Tanypodinae		2	3	1	6	1,41	
sF/ Orthocladinae		15	10	2	27	6,32	
sF/ Chironominae					0	0,00	
Tr. Chironomini		25	3	2	30	7,03	
Tr. Tanytarsini		3	2	4	9	2,11	
F/ Simuliidae	Simulium sp.	1			1	0,23	
sF/ Ceratopogoninae		2	1		3	0,70	
F/ Empididae		1			1	0,23	
lombre total d'individus		270	122	35	427	ī	
lombre de Taxons		25	21	16	31		
/inimum		1	1	10	<u> </u>	0,00	0,0
Maximum		57	49	4		22,72	144,
						*	
indian do Characa					2 71		
indice de Shannon					3,71		
Indice de Simpson					0,11		

RAPPORT FINAL Page 115/135

BER carême 2010

		-	Echantillons		Total	Fréq.	F. Cum
TAXONS	Genre ou espèce	М	D1	D2	N	%	%
Cl/ Oligochètes			1	1	2	0,31	0,31
HYDRACARIENS			1		1	0,16	0,16
MOLLUSQUES							73,52
CI/ Gastéropodes							73,52
F/ Thiaridae	Thiaridae	238	123	111	472	73,52	
ARTHROPODES							26,01
Cl/ Crustacés							6,23
sCl/ Malacostracés							6,23
O/ Décapodes							6,23
F/ Atyidae	Atyidae				0	0,00	
	Micratya poeyi	3	1	2	6	0,93	
	Atya sp.				0	0,00	
	Atya innocous	5			5	0,78	
	Atya scabra	1			1	0,16	
F/ Palaemonidae	Palaemonidae				0	0,00	
	Macrobrachium sp.	7	21		28	4,36	
F/ Hydropsychidae	Smicridea sp.	1		1	2	0,31	
., ., jeropojemano	Neotrichia sp.			1	1	0,16	
F/ Baetidae	Americabaetis sp.	47	25	1	73	11,37	
17 Baotidae	Hagenulopsis guadeloupensis		_5	1	1	0,16	
F/ Leptohyphidae	Leptohyphidae		3	_	3	0,47	
17 Exploriy prilade	Tricorythodes griseus	4	1		5	0,78	
	Leptohyphes sp.	4	2	1	7	1,09	
O/ Hétéroptères	Zopienypnoe op.		_	-	,	1,00	3,27
F/ Veliidae	Rhagovelia sp.	11	4	6	21	3,27	3,27
O/ Coléoptères	Tinagovena Sp.	11	-	U	21	5,27	0,31
F/ Elmidae	Elmidae				0	0,00	0,31
r/ Elillidae	Elsianus sp.	1				0,00	
	Neoelmis sp.	1	1		1		
O/ Dintàres	Nedelinis sp.		1		'	0,16	4 74
O/ Diptères				1	_	0.40	1,71
F/ Chironomidae		1		1	1	0,16	
sF/ Orthocladinae	ı	1			1	0,16	
sF/ Chironominae	I			_	0	0,00	
Tr. Chironomini			2	6	6	0,93	
Tr. Tanytarsini			2		2	0,31	
sF/ Ceratopogoninae			1		1	0,16	
O/ Lépidoptères			4				0,16
F/ Pyralidae			1		1	0,16	
Nombre total d'individus		323	187	132	642		
Nombre de Taxons		12	14	11	23		
Minimum		1	1	1		0,00	0,00
Maximum		238	123	111		73,52	73,52
indice de Shannon					1,61		
Indice de Simpson					0,56		
					- /		

RAPPORT FINAL Page 116/135

CAF carême 2010

TAYONS	Gonro ou conèco	М	Echantillons D1	D2	Total N	Fréq.	F. Cu %
TAXONS	Genre ou espèce	M	וט	D2	N	%	_
RS OVER A DE			4			0.54	0,5
CI/ Oligochètes DRACARIENS		2	1		3	0,51	0,
		1			1	0,17	0,
LLUSQUES							40,
CI/ Gastéropodes		4.60	40	20			40,
F/ Thiaridae	Thiaridae	168	43	20	231	39,02	
F/ Physidae	Physa sp.	6			6	1,01	
F/ Neritidae	Neritina sp.			4	4	0,68	
THROPODES							58,
CI/ Crustacés							0,
sCI/ Ostracodes					0	0,00	0,0
sCl/ Malacostracés							0,
O/ Amphipodes							0,0
F/ Gammaridae					0	0,00	
O/ Décapodes							0,
F/ Palaemonidae	Palaemonidae				0	0,00	
	Macrobrachium sp.	1			1	0,17	
Cl/ Insectes							58,
O/ Trichoptères							5,
F/ Helicopsychidae	Helicopsyche sp.	7	2		9	1,52	
F/ Hydropsychidae	Smicridea sp.	2	2		4	0,68	
F/ Hydroptilidae	Hydroptilidae	_	1		1	0,17	
., ., .,	Neotrichia sp.	15	1		16	2,70	
F/ Philopotamidae	Chimarra sp.	1	2		3	0,51	
F/ Xiphocentronidae	Xiphocentron fuscum	1 -	1		1	0,17	
O/ Ephéméroptères	Alphocemion rascam		-		l '	0,17	41,
F/ Baetidae	Americabaetis sp.	35			OF.	5,91	+',
	· ·	33			35 0		
F/ Leptophlebiidae	Leptophlebiidae					0,00	
E/L colob obide	Terpides	8	11	_	8	1,35	
F/ Leptohyphidae	Leptohyphidae	12	11	6	29	4,90	
	Tricorythodes griseus	56	12	4	72	12,16	
	Leptohyphes sp.	20	56	18	94	15,88	
F/ Caenidae	Caenis sp.	4		1	5	0,84	
O/ Coléoptères							1,3
F/ Elmidae	Elmidae				0	0,00	
	Elsianus sp.		4		4	0,68	
	Hexanchorus sp.	3	1		4	0,68	
O/ Diptères							9,4
F/ Chironomidae		2			2	0,34	
sF/ Tanypodinae		5	1		6	1,01	
sF/ Orthocladinae		2	12	2	16	2,70	
Tr. Chironomini		23		1	24	4,05	
Tr. Tanytarsini		5			5	0,84	
F/ Simuliidae	Simulium sp.		1		1	0,17	
sF/ Ceratopogoninae	'	2			2	0,34	
O/ Odonates		I -				-,0.	0,6
sO/ Zygoptera	•						0,0
F/ Coenagrionidae	Coenagrionidae				0	0,00	,
1, occhagnomade	Enallagma coecum	3			3	0,51	
	Ischnura ramburii	1			1	0,51	
O/ Lépidoptères	i sominuta rambum	1			['	0,17	
				1		0.17	0,
F/ Pyralidae	<u> </u>			1	1	0,17	
nbre total d'individus		384	151	57	592		
nbre de Taxons		24	16	9	30		_
imum :		1	1	1		0,00	0,0
rimum		168	56	20		39,02	58,

indice de Shannon 3,15
Indice de Simpson 0,20
Indice d'Equitabilité 0,48

RAPPORT FINAL Page 117/135

CAV carême 2010

			Echantillons		Total	Fréq.	F. Cum.
TAXONS	Genre ou espèce	М	D1	D2	N	%	%
VERS							1,50
CI/ Oligochètes		20	2		22	1,50	1,50
NEMERTIENS		1			1	0,07	0,07
MOLLUSQUES							0,00
CI/ Gastéropodes							37,28
F/ Thiaridae	Thiaridae	253	175	120	548	37,28	
ARTHROPODES						,	61,16
CI/ Crustacés							1,84
sCI/ Malacostracés							1,84
O/ Décapodes							1,84
F/ Atyidae	Atyidae	1			1	0,07	1,04
17 Atyluae		11	2		13		
	Micratya poeyi	9	2			0,88	
E/ Dala are solida a	Atya innocous	9			9	0,61	
F/ Palaemonidae	Palaemonidae				0	0,00	
	Macrobrachium sp.	4			4	0,27	
CI/ Insectes							59,32
O/ Trichoptères	L			_			3,33
F/ Hydropsychidae	Smicridea sp.	3	31	4	38	2,59	
	Neotrichia sp.	6		1	7	0,48	
F/ Philopotamidae	Chimarra sp.		2		2	0,14	
F/ Xiphocentronidae	Xiphocentron fuscum		2		2	0,14	
O/ Ephéméroptères							42,65
F/ Baetidae	Americabaetis sp.	20	2	1	23	1,56	
F/ Leptophlebiidae	Leptophlebiidae				0	0,00	
, ,	Terpides	1		1	2	0,14	
F/ Leptohyphidae	Leptohyphidae		99		99	6,73	
, ,,	Tricorythodes griseus	67	3	4	74	5,03	
	Leptohyphes sp.	395	19	15	429	29,18	
O/ Hétéroptères	' '' '	000			0	20,.0	1,56
F/ Veliidae	Rhagovelia sp.	15	3	4	22	1,50	.,00
F/ Gerridae	3	13	1	•	1	0,07	
O/ Coléoptères			-		'	0,07	0,54
F/ Elmidae	Elmidae				0	0,00	0,54
F/ Elittidae	Hexanchorus sp.	3	4	1	8	0,54	
	Elmidae adultes	3	4	1			
E/ Describeration					0	0,00	
F/ Psephenidae	Psephenops sp.				0	0,00	
F/ Staphylinidae					0	0,00	
O/ Diptères					_		11,22
F/ Chironomidae		_			0	0,00	
sF/ Tanypodinae		5			5	0,34	
sF/ Orthocladinae		55	4		59	4,01	
sF/ Chironominae		90		1	91	6,19	
Tr. Chironomini					0	0,00	
Tr. Tanytarsini			9		9	0,61	
F/ Psychodidae			1		1	0,07	
Nombre total d'individus		959	359	152	1470		
Nombre de Taxons		18	16	10	24		
Minimum		1	1	1		0,00	0,00
Maximum		395	175	120		37,28	61,16
indice de Shannon					2,72		
Indice de Simpson					0,24		
Indice d'Equitabilité					0,42		

RAPPORT FINAL Page 118/135

CBN carême 2010

			Echantillons		Total	Fréq.	F. Cum.
TAXONS	Genre ou espèce	M	D1	D2	N	%	%
VERS							0,41
Cl/ Oligochètes		3		1	4	0,41	0,41
MOLLUSQUES							0,51
CI/ Gastéropodes	This side	200	40	71	400	44.00	0,51
F/ Thiaridae F/ Bulinidae	Thiaridae	289 6	48	71	408	41,63	
F/ Neritidae	Pleiophysal granulata Neritina sp.	4		1	6 5	0,61 0,51	
ARTHROPODES	rventina sp.	4		1	5	0,51	56,84
Cl/ Crustacés							1,02
sCI/ Ostracodes		3			3	0,31	0,31
sCI/ Malacostracés		3			3	0,51	0,71
O/ Décapodes							0,71
F/ Atyidae	Atyidae				0	0.00	0,71
177ttylado	Micratya poeyi	3	1		4	0,41	
	Atya innocous	1	-		1	0,10	
F/ Palaemonidae	Palaemonidae				0	0,00	
171 didomonidae	Macrobrachium sp.	1			1	0,10	
F/ Grapsidae	Sesarma sp.	1			1	0,10	
CI/ Insectes						٥, . ٠	55,82
O/ Trichoptères							5,41
F/ Helicopsychidae	Helicopsyche sp.	5		1	6	0,61] -,
F/ Hydropsychidae	Smicridea sp.	6		-	6	0,61	
F/ Hydroptilidae	Hydroptilidae				0	0,00	
., .,,	Neotrichia sp.	17	1		18	1,84	
F/ Philopotamidae	Chimarra sp.	10	7		17	1,73	
F/ Polycentropodidae	Cernotina sp.	4	•		4	0,41	
F/ Xiphocentronidae	Xiphocentron fuscum		2		2	0,20	
O/ Ephéméroptères			_		_	-,	40,41
F/ Baetidae	Americabaetis sp.	167		1	168	17,14	- ,
1 / Edolidae	Cloedes caraibensis		1		1	0,10	
	Fallceon ater	17	1		18	1,84	
F/ Leptohyphidae	Leptohyphidae	24	1	2	27	2,76	
, sp. 34	Tricorythodes griseus	56	3	2	61	6,22	
	Leptohyphes sp.	86	29		115	11,73	
F/ Caenidae	Caenis sp.				0	0,00	
	Caenis femina	3		2	5	0,51	
	Caenis catherinae		1		1	0,10	
O/ Coléoptères							1,22
F/ Elmidae	Elmidae	1			1	0,10	
	Elsianus sp.	3			3	0,31	
	Hexanchorus sp.	5			5	0,51	
	Elmidae adultes	2	1		3	0,31	
O/ Diptères							8,37
F/ Chironomidae					0	0,00	
sF/ Tanypodinae		19	1		20	2,04	
sF/ Orthocladinae		34			34	3,47	
sF/ Chironominae					0	0,00	
Tr. Chironomini		22			22	2,24	
Tr. Tanytarsini		3			3	0,31	
F/ Simuliidae	Simulium sp.	2			2	0,20	
F/ Ceratopogonidae					0	0,00	
sF/ Ceratopogoninae			1		1	0,10	
O/ Odonates							0,31
sO/ Zygoptera							0,20
F/ Coenagrionidae	Coenagrionidae				0	0,00	
	Enallagma coecum	2			2	0,20	
sO/ Anisoptera	•						0,10
F/ Libellulidae	Libellulidae				0	0,00	
	Brechmorhoga praecox	1			1	0,10	
O/ Lépidoptères							0,10
F/ Pyralidae			1		1	0,10	
Nombre total d'individus		800	99	81	980	i	
Nombre de Taxons		31	15	8	36		
Minimum		1	1	1		0,00	0,00
Maximum		289	48	71		41,63	56,84
indice de Shannon					3,03		
Indice de Simpson					0,22		
Indice d'Equitabilité					0,47		
maice a Equitabilité					0,47		

RAPPORT FINAL Page 119/135

COP carême 2010

			Echantillon	S	Total	Fréq.	F. Cum
TAXONS	Genre ou espèce	М	D1	D2	N	%	%
VERS							6,05
CI/ Oligochètes		8	6	13	27	6,05	6,05
MOLLUSQUES							0,67
CI/ Gastéropodes							0,67
F/ Ancylidae	Gundlachia radiata	3			3	0,67	
ARTHROPODES							93,27
CI/ Crustacés							1,35
sCI/ Malacostracés							1,35
O/ Décapodes							1,35
F/ Palaemonidae	Palaemonidae		1		1	0,22	
	Palaemon pandaliformis	1	4		5	1,12	
CI/ Insectes							91,93
O/ Ephéméroptères							82,51
F/ Baetidae	Americabaetis sp.	21	1		22	4,93	
	Callibaetis floridanus				0	0,00	
	Cloedes caraibensis	2			2	0,45	
	Fallceon ater				0	0,00	
F/ Leptophlebiidae	Leptophlebiidae				0	0,00	
	Terpides	2			2	0,45	
	Hagenulopsis guadeloupensis				0	0,00	
F/ Leptohyphidae	Leptohyphidae				0	0,00	
, ,,	Tricorythodes griseus				0	0,00	
	Leptohyphes sp.				0	0,00	
F/ Caenidae	Caenis sp.				0	0,00	
	Caenis femina	313	8	2	323	72,42	
	Caenis catherinae	19			19	4,26	
O/ Coléoptères							0,22
F/ Psephenidae	Psephenops sp.	1			1	0,22	,
O/ Diptères							9,19
F/ Chironomidae					0	0,00	
sF/ Tanypodinae		9		3	12	2,69	
Tr. Chironomini		21		6	27	6,05	
Tr. Tanytarsini		1		1	2	0,45	
Nombre total d'individus	•	401	20	25	446	1	
Nombre de Taxons		12	5	5	13	i	
Minimum		1	1	1		0,00	0,00
Maximum		313	8	13		72,42	93,27
indice de Shannon					1,64		
Indice de Simpson					0,54		
Indice d'Equitabilité					0,25		

RAPPORT FINAL Page 120/135

GAG carême 2010

			Echantillons		Total	Fréq.	F. Cum
TAXONS	Genre ou espèce	M	D1	D2	N	%	%
MOLLUSQUES							0,00
CI/ Gastéropodes							1,07
F/ Thiaridae	Thiaridae	2		1	3	1,07	
ARTHROPODES							98,93
Cl/ Crustacés							5,36
sCI/ Malacostracés							5,36
O/ Décapodes							5,36
F/ Atyidae	Atyidae	1			1	0,36	
•	Micratya poeyi	6		4	10	3,57	
	Atya innocous	1			1	0,36	
F/ Palaemonidae	Palaemonidae				0	0,00	
	Macrobrachium sp.	1	2		3	1,07	
CI/ Insectes	,						93,57
O/ Trichoptères							1,07
F/ Hydropsychidae	Smicridea sp.	1		1	2	0,71	· 1
F/ Philopotamidae	Chimarra sp.	1			1	0,36	
O/ Ephéméroptères	· ·					.,	88,57
F/ Baetidae	Americabaetis sp.	173	8	2	183	65,36	, -
1,	Fallceon ater		2		2	0,71	
F/ Leptophlebiidae	Leptophlebiidae		_		0	0,00	
	Terpides	3			3	1,07	
F/ Leptohyphidae	Leptohyphidae	2	2		4	1,43	
17 Lopiony pindao	Tricorythodes griseus	10	5		15	5,36	
	Leptohyphes sp.	31	7	2	40	14,29	
F/ Caenidae	Caenis sp.	31	•	-	0	0,00	
17 Gaoingae	Caenis catherinae	1			1	0,36	
O/ Hétéroptères		_				0,00	0,36
F/ Veliidae	Rhagovelia sp.	1			1	0,36	0,00
O/ Diptères	The second spi	_				0,00	3,57
sF/ Tanypodinae		2	1		3	1,07	0,07
sF/ Orthocladinae		3	-		3	1,07	
sF/ Chironominae	•	3			0	0,00	
Tr. Chironomini	1	4			4	1,43	
			6=	4.5		1	
Nombre total d'individus Nombre de Taxons		243 17	27 7	10 5	280 18		
Minimum		17	1	1		0,00	0,00
Maximum		173	8	4		65,36	98,93
indice de Shannon					1,97		
Indice de Simpson					0,45		
Indice d'Equitabilité					0,30		

RAPPORT FINAL Page 121/135

GRS carême 2010

ARTHROPODES CI/ Crustacés	Genre ou espèce faridae	2 7	1 1	D2 12	2 20	% 0,44 4,40	% 4,84 0,44 4,40 0,00 0,00
CI/ Turbellariés F/ Dugesiidae CI/ Oligochètes MOLLUSQUES CI/ Gastéropodes F/ Thiaridae ARTHROPODES CI/ Crustacés	idae			12	20	4,40	0,44 4,40 0,00
F/ Dugesiidae CI/ Oligochètes MOLLUSQUES CI/ Gastéropodes F/ Thiaridae ARTHROPODES CI/ Crustacés	idae			12	20	4,40	4,40 0,00
CI/ Oligochètes MOLLUSQUES CI/ Gastéropodes F/ Thiaridae ARTHROPODES CI/ Crustacés	idae			12	20	4,40	0,00
MOLLUSQUES CI/ Gastéropodes F/ Thiaridae ARTHROPODES CI/ Crustacés	idae	7		12			0,00
CI/ Gastéropodes F/ Thiaridae ARTHROPODES CI/ Crustacés	idae		1		1		
F/ Thiaridae Thi ARTHROPODES CI/ Crustacés	idae		1		1		0.00
ARTHROPODES CI/ Crustacés	idae		1		1		0,00
CI/ Crustacés						0,22	
							94,95
							0,22
O/ Décapodes							0,22
F/ Atyidae Aty					0	0,00	
Mic	cratya poeyi		1		1	0,22	
CI/ Insectes							94,73
O/ Trichoptères							48,35
F/ Hydropsychidae Sm	icridea sp.	170		11	181	39,78	
F/ Hydroptilidae Hyd	droptilidae				0	0,00	
Me	trichia sp.	1			1	0,22	
Ne	otrichia sp.		1		1	0,22	
Zui	matrichia sp.	1	1		2	0,44	
F/ Philopotamidae Chi	imarra sp.	18		10	28	6,15	
-	hocentron fuscum		6	1	7	1,54	
O/ Ephéméroptères							35,16
-	ericabaetis sp.	46	2	1	49	10,77	
	lceon ater	4		1	5	1,10	
	otohyphidae	3		2	5	1,10	
•	corythodes griseus	28	20	23	71	15,60	
	otohyphes sp.	27		3	30	6,59	
O/ Coléoptères	7/ -			J		0,00	1,32
	nidae				0	0,00	,-
	ianus sp.	1			1	0,22	
	xanchorus sp.	3	1	1	5	1,10	
O/ Diptères	tanonorae op.		-	-	Ŭ	1,10	9,89
F/ Chironomidae					0	0,00	0,00
	rrisius			1	1	0,22	
sF/ Tanypodinae	noide	2	2	1	5	1,10	
sF/ Orthocladinae		13	2	1	16	3,52	
sF/ Chironominae		13	_	_	0	0,00	
Tr. Chironomini		7	1		8	1,76	
Tr. Tanytarsini		10	1		11	2,42	1
-	nulium sp.	10	1		1	0,22	1
F/ Empididae	шин эр.	3			3	0,66	
•					_	0,00	<u> </u>
Nombre total d'individus		347	40	68	455		
Nombre de Taxons Minimum		19 1	13	13	24	0.00	0,00
Maximum		170	1 20	1 23		0,00 39,78	94,95
Waxii u ii		170	20	20		00,70	57,55
indice de Shannon					3,03		
Indice de Simpson					0,21		
Indice d'Equitabilité					0,47		

RAPPORT FINAL Page 122/135

LEG carême 2010

		Echantillons	3	Total	Fréq.	F. Cum.
Genre ou espèce	М	D1	D2	N	%	%
						0,38
						0,00
Thiaridae	326	36	120	482	90,94	
Pleiophysal granulata	1			1	0,19	
	3			3	0,57	
<i>Physa</i> sp.	1			1	0,19	
						0,38
Pisidium sp.	2			2	0,38	
						7,74
						0,19
						0,19
Palaemonidae				0	0,00	
Macrobrachium sp.	1			1	0,19	
						7,55
						0,19
Smicridea sp.		1		1	0,19	
						3,58
Americabaetis sp.	2	2		4	0,75	
Leptohyphidae		3		3	0,57	
Tricorythodes griseus	2			2	0,38	
Leptohyphes sp.	1	2		3	0,57	
Caenis sp.	1			1	0,19	
Caenis femina	5			5	0,94	
Caenis catherinae	1			1	0,19	
						2,64
Rhagovelia sp.	2	5	7	14	2,64	
						1,13
				0	0,00	
_				0	0,00	
	6			6	1,13	
	354	49	127	530	1	
	14	6	2	16	1	
	1	1	7		0,00	0,00
	326	36	120		90,94	7,74
				0,74		
				0,83		
				0,11		
	Thiaridae Pleiophysal granulata Physa sp. Pisidium sp. Palaemonidae Macrobrachium sp. Smicridea sp. Americabaetis sp. Leptohyphidae Tricorythodes griseus Leptohyphes sp. Caenis sp. Caenis femina Caenis catherinae	Thiaridae 326 Pleiophysal granulata 1 3 Physa sp. 1 Pisidium sp. 2 Palaemonidae Macrobrachium sp. 1 Smicridea sp. 2 Leptohyphidae Tricorythodes griseus 2 Leptohyphes sp. 1 Caenis sp. 1 Caenis femina 5 Caenis catherinae 1 Rhagovelia sp. 2 1 6 354 14 1	Genre ou espèce M D1 Thiaridae 326 36 Pleiophysal granulata 1 3 Physa sp. 1 1 Pisidium sp. 2 2 Palaemonidae 1 3 Macrobrachium sp. 1 1 Smicridea sp. 1 2 Leptohyphidae 3 3 Tricorythodes griseus 2 2 Leptohyphes sp. 1 2 Caenis sp. 1 2 Caenis catherinae 1 3 Rhagovelia sp. 2 5 6 354 49 14 6 1 14 6 1	Thiaridae 326 36 120 Pleiophysal granulata 1 3 Physa sp. 1 Pisidium sp. 2 Palaemonidae Macrobrachium sp. 1 Smicridea sp. 1 Americabaetis sp. 2 Leptohyphidae 3 Tricorythodes griseus 2 Leptohyphes sp. 1 Caenis sp. 1 Caenis femina 5 Caenis catherinae 1 Rhagovelia sp. 2 5 7	Genre ou espèce M	Thiaridae 326 36 120 482 90,94

RAPPORT FINAL Page 123/135

LEP carême 2010

			Echantillons	3	Total	Fréq.	F. Cum.
TAXONS	Genre ou espèce	М	D1	D2	N	%	%
VERS							0,32
Cl/ Oligochètes		1			1	0,32	0,32
MOLLUSQUES							0,00
Cl/ Gastéropodes							0,00
F/ Thiaridae	Thiaridae		95	131	226	72,20	
ARTHROPODES							27,48
Cl/ Crustacés							11,18
O/ Décapodes							11,18
	Micratya poeyi	3	19	8	30	9,58	
	Atya scabra		1		1	0,32	
	Jonga serrei	1			1	0,32	
F/ Palaemonidae	Palaemonidae				0	0,00	
	Macrobrachium sp.		1	2	3	0,96	
Cl/ Insectes							15,65
O/ Trichoptères							0,32
F/ Philopotamidae	Chimarra sp.	1			1	0,32	
O/ Ephéméroptères							11,82
F/ Baetidae	Americabaetis sp.	26	2	2	30	9,58	
	Cloedes caraibensis	1			1	0,32	
F/ Leptohyphidae	Leptohyphidae	2			2	0,64	
	Tricorythodes griseus	1			1	0,32	
	Leptohyphes sp.	2	1		3	0,96	
F/ Caenidae	Caenis sp.	1			1	0,32	
	Caenis femina	1			1	0,32	
O/ Diptères							3,51
F/ Chironomidae					0	0,00	
sF/ Orthocladinae		2	1		3	0,96	
sF/ Chironominae	_				0	0,00	
Tr. Chironomini		7			7	2,24	
Tr. Tanytarsini		1			1	0,32	
Nombre total d'individus		50	120	143	313		
Nombre de Taxons		14	7	4	17		
Minimum		1	1	2		0,00	0,00
Maximum		26	95	131		72,20	27,48
indice de Shannon					1,59		
Indice de Simpson					0,54		
					0,54		
Indice d'Equitabilité					0,24		

RAPPORT FINAL Page 124/135

LOP carême 2010

F/ Helicopsychidae Helicopsyche sp. 12 3 11 F/ Hydropsychidae Smicridea sp. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 4,81 1 0,96 5 14,42 4 3,85 3 2,88 2 1,92	96 ,42 85 88 89 90 00
CI/ Gastéropodes F/ Thiaridae 2 1 2 5 F/ Insectes CI/ Insectes	1 0,96 5 14,42 4 3,85 3 2,88 2 1,92 0 0,00	95,1 26,9 96 ,42 85 88 92 00
F/ Thiaridae Cl/ Insectes O/ Trichoptères F/ Calamoceratidae F/ Helicopsychidae F/ Hydropsychidae F/ Hydropsychidae F/ Philopotamidae F/ Philopotamidae F/ Polycentropodidae Thiaridae 2 1 2 5 5 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8	1 0,96 5 14,42 4 3,85 3 2,88 2 1,92 0 0,00	81 95,1 26,9 96,42 85 88 92 00
Cl/ Insectes O/ Trichoptères F/ Calamoceratidae	1 0,96 5 14,42 4 3,85 3 2,88 2 1,92 0 0,00	95,1 26,9 96 ,42 85 88 92 00
O/ Trichoptères F/ Calamoceratidae	5 14,42 4 3,85 3 2,88 2 1,92 0 0,00	26,9 96 ,42 85 88 92 00
F/ Calamoceratidae Phylloicus sp. 1 F/ Helicopsychidae Helicopsyche sp. 12 3 11 F/ Hydropsychidae Smicridea sp. 4 4 4 Neotrichia sp. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 14,42 4 3,85 3 2,88 2 1,92 0 0,00	96 ,42 85 88 92 00
F/ Helicopsychidae Helicopsyche sp. 12 3 1.5 F/ Hydropsychidae Smicridea sp. 4 4 4.5 Neotrichia sp. 3 3 3.5 F/ Philopotamidae Chimarra sp. 1 1 1 2.5 F/ Polycentropodidae Cernotina sp. 3 3 3.5	5 14,42 4 3,85 3 2,88 2 1,92 0 0,00	.,42 85 88 92 00
F/ Hydropsychidae Smicridea sp. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3,85 3 2,88 2 1,92 0 0,00	85 88 92 00
Neotrichia sp. 3 F/ Philopotamidae Chimarra sp. 1 1 2 F/ Polycentropodidae Cernotina sp. 00	2,88 2 1,92 0 0,00	88 92 00
F/ Philopotamidae Chimarra sp. 1 1 2 F/ Polycentropodidae Cernotina sp. 0	2 1,92 0 0,00	92 00
F/ Polycentropodidae Cernotina sp.	0,00	00
	,	
Polyplectronus sp. 1 2 3	3 2,88	88
r orypicol opas sp .		
O/ Ephéméroptères	1	36,5
F/ Baetidae Americabaetis sp. 16 1 1	7 16,35	,35
F/ Leptophlebiidae Leptophlebiidae	0,00	00
Terpides 5	5 4,81	81
F/ Leptohyphidae Leptohyphidae 1 1 2	2 1,92	92
Tricorythodes griseus 7 5 1:	2 11,54	,54
Leptohyphes sp. 2	2 1,92	92
O/ Coléoptères		3,8
	0,00	00
Elsianus sp. 1	1 0,96	96
F/ Psephenidae Psephenops sp. 1 2 3	3 2,88	88
F/ Staphylinidae		
O/ Diptères		27,8
F/ Chironomidae	1 0,96	96
Harrisjus	0,00	00
sF/ Tanypodinae 2 4 6	·	
**	4 13,46	
sF/ Chironominae		•
Tr. Chironomini 6 1 7	7 6,73	
	0,96	
Nombre total d'individus 57 14 33 10 Nombre de Taxons 12 8 11 11		
Minimum 1 1 1	0,00	0,0 0,0
Maximum 16 4 13	16,35	-
indice de Shannon 3,7	71	
Indice de Simpson 0,	09	
Indice d'Equitabilité 0,4	57	

RAPPORT FINAL Page 125/135

LOS carême 2010

			Echantillons		Total	Fréq.	F. Cum
TAXONS	Genre ou espèce	M	D1	D2	N	%	%
MOLLUSQUES							37,93
CI/ Gastéropodes							37,93
F/ Thiaridae	Thiaridae	21	30	13	64	36,78	
F/ Neritidae	Neritina sp.			2	2	1,15	
ARTHROPODES							62,07
CI/ Crustacés							4,02
O/ Décapodes							4,02
F/ Atyidae	Atyidae				0	0,00	
	Micratya poeyi	4		1	5	2,87	
F/ Palaemonidae	Palaemonidae	_			0	0,00	
	Macrobrachium sp.	2			2	1,15	
CI/ Insectes							58,05
O/ Trichoptères							8,05
F/ Helicopsychidae	Helicopsyche sp.	1		2	3	1,72	
F/ Hydropsychidae	Smicridea sp.	6	1		7	4,02	
	Neotrichia sp.	1			1	0,57	
F/ Philopotamidae	Chimarra sp.	2			2	1,15	
F/ Xiphocentronidae	Xiphocentron fuscum			1	1	0,57	
O/ Ephéméroptères							38,51
F/ Baetidae	Americabaetis sp.	31			31	17,82	
	Fallceon ater	4			4	2,30	
F/ Leptophlebiidae	Leptophlebiidae				0	0,00	
F/ Leptohyphidae	Leptohyphidae	2		1	3	1,72	
	Tricorythodes griseus	3			3	1,72	
	Leptohyphes sp.	24	2		26	14,94	
O/ Diptères							9,77
F/ Chironomidae					0	0,00	
	Harrisius	2		1	3	1,72	
sF/ Tanypodinae		2			2	1,15	
sF/ Orthocladinae		1	2	1	4	2,30	
sF/ Chironominae					0	0,00	
Tr. Chironomini		6			6	3,45	
Tr. Tanytarsini		1			1	0,57	
sF/ Ceratopogoninae		1			1	0,57	
O/ Odonates							1,72
sO/ Zygoptera							1,72
F/ Coenagrionidae	Coenagrionidae				0	0,00	
	Enallagma coecum	2		1	3	1,72	
Nombre total d'individus		116	35	23	174]	
Nombre de Taxons		19	4	9	21		
Minimum		1	1	1		0,00	0,00
Maximum		31	30	13		36,78	62,07
indice de Shannon					3,11		
Indice de Simpson					0,19		
Indice d'Equitabilité					0,48		
·							

RAPPORT FINAL Page 126/135

MAC carême 2010

			Echantillons	1	Total	Fréq.	F. Cum.
TAXONS	Genre ou espèce	M	D1	D2	N	%	%
CI/ Oligochètes				2	2	0,38	0,38
MOLLUSQUES							68,76
CI/ Gastéropodes							68,76
F/ Thiaridae	Thiaridae	77	25	126	228	43,43	
F/ Bulinidae	Pleiophysal granulata				0	0,00	
F/ Ampullariidae					0	0,00	
F/ Physidae	Physa sp.				0	0,00	
F/ Ancylidae	Gundlachia radiata				0	0,00	
F/ Neritidae	Neritina sp.	113	6	14	133	25,33	
CI/ Bivalves							0,00
F/ Sphaeriidae	Pisidium sp.				0	0,00	
ARTHROPODES							30,86
CI/ Crustacés							10,10
O/ Décapodes							10,10
F/ Atyidae	Atyidae				0	0,00	
	Atya sp.		5	3	8	1,52	
	Jonga serrei	18			18	3,43	
F/ Palaemonidae	Palaemonidae				0		
	Macrobrachium sp.	24			24		
F/ Xiphocaridae	Xiphocaris elongata	3			3		
CI/ Insectes	, ,					,	20,76
O/ Ephéméroptères							18,29
F/ Baetidae	Americabaetis sp.	84	1	1	86	16.38	,
. / Daoileac	Fallceon ater	3	•	•	3		
F/ Leptohyphidae	Leptohyphidae	Ü			0		
17 Lopiony princac	Tricorythodes griseus	3			3		
	Leptohyphes sp.		1		1		
F/ Caenidae	Caenis sp.	1			1		
17 Oderiidae	Caenis sp. Caenis femina	'		1	1		
	Caenis catherinae	1		ı	1	0,38 43,43 0,00 0,00 0,00 0,00 25,33 0,00	
O/ Diptères	Caeriis Catherinae	ı ı			'	0, 19	2,48
F/ Chironomidae					0	0.00	2,40
		4	1	4	0		
sF/ Tanypodinae		4	ı	1	6		
sF/ Orthocladinae	l	1			1		
sF/ Chironominae	1	_			0		
Tr. Chironomini		5		<u>l</u>	6	1,14	
Nombre total d'individus		337	39	149	525		
Nombre de Taxons		13	6	8	17		
Minimum		1	1	1			0,00
Maximum		113	25	126		43,43	68,76
indice de Shannon					2,31		
Indice de Simpson					0,28		
·							
Indice d'Equitabilité					0,35		

RAPPORT FINAL Page 127/135 MOM carême 2010

			Echantillons		Total	Fréq.	F. Cum.
TAXONS	Genre ou espèce	М	D1	D2	N	%	%
VERS							5,20
Cl/ Turbellariés							0,31
F/ Dugesiidae		1	1		2	0,31	
CI/ Achètes							0,15
F/ Glossiphoniidae		1			1	0,15	
CI/ Oligochètes		16	11	4	31	4,74	4,74
MOLLUSQUES							44,19
CI/ Gastéropodes	L						44,19
F/ Thiaridae	Thiaridae	47	17	11	75	11,47	
F/ Physidae	Physa sp.	1			1	0,15	
F/ Ancylidae	Gundlachia radiata		1		1	0,15	
F/ Neritidae	Neritina sp.	50	23	15	88	13,46	
F/ Hydrobiidae		80	41	2	123	18,81	
F/ Planorbidae			1		1	0,15	
ARTHROPODES							50,61
CI/ Crustacés							0,61
O/ Décapodes							0,61
F/ Palaemonidae	Palaemonidae				0	0,00	
	Macrobrachium sp.		2		2	0,31	
F/ Xiphocaridae	Xiphocaris elongata		2		2	0,31	
CI/ Insectes							50,00
O/ Trichoptères							3,67
F/ Hydropsychidae	Smicridea sp.	9	1		10	1,53	
	Neotrichia sp.	8	5		13	1,99	
F/ Philopotamidae	Chimarra sp.	1			1	0,15	
O/ Ephéméroptères							25,84
F/ Baetidae	Americabaetis sp.	100	43	2	145	22,17	
F/ Leptophlebiidae	Leptophlebiidae				0	0,00	
	Terpides	1			1	0,15	
F/ Leptohyphidae	Leptohyphidae				0	0,00	
, ,,	Tricorythodes griseus	7	1	1	9	1,38	
	Leptohyphes sp.	2			2	0,31	
F/ Caenidae	Caenis sp.	2	3		5	0,76	
.,	Caenis femina		5		5	0,76	
	Caenis catherinae		2		2	0,31	
O/ Hétéroptères			_			0,0.	0,15
F/ Veliidae	Rhagovelia sp.		1		1	0,15	0,.0
O/ Diptères	The second spi		-		i i	0,10	19,57
sF/ Tanypodinae		8	4	3	15	2,29	10,07
sF/ Orthocladinae		34	1	3	35	5,35	
sF/ Chironominae	ı	34	-		0	0,00	
Tr. Chironomini	1	22	21	1	44	6,73	
Tr. Tanytarsini		21	10	2	33	5,05	
F/ Empididae		1	10	2	1	0,15	
O/ Odonates		1 1			'	0,15	0.76
	l						0,76
sO/ Zygoptera	Cooperationides				0	0.00	0,00
F/ Coenagrionidae	Coenagrionidae		-		0	0,00	
	Enallagma coecum		5		5	0,76	<u> </u>
Nombre total d'individus		412	201	41	654		
Nombre de Taxons		20	22	9	28		
Minimum		1	1	1		0,00	0,00
Maximum		100	43	15		22,17	50,61
indice de Shannon					3,41		
Indice de Simpson					0,13		
•							
Indice d'Equitabilité					0,52		

RAPPORT FINAL Page 128/135

OMD carême 2010

			Echantillons		Total	Fréq.	F. Cum
TAXONS	Genre ou espèce	М	D1	D2	N	%	%
CI/ Oligochètes		1	4	3	8	1,86	1,86
MOLLUSQUES							0,00
CI/ Gastéropodes							0,00
F/ Thiaridae	Thiaridae	166	35		201	46,74	
ARTHROPODES							51,40
CI/ Crustacés							0,70
sCI/ Malacostracés							0,70
O/ Décapodes							2,09
	Micratya poeyi	1		1	2	0,47	
F/ Palaemonidae	Palaemonidae				0	0,00	
	Macrobrachium sp.	3			3	0,70	
	Neotrichia sp.	2	1		3	0,70	
F/ Polycentropodidae	Cernotina sp.		1		1	0,23	
O/ Ephéméroptères							16,98
F/ Baetidae	Americabaetis sp.	22	27	1	50	11,63	
	Cloedes caraibensis		1		1	0,23	
	Fallceon ater		2		2	0,47	
F/ Leptohyphidae	Leptohyphidae				0	0,00	
, ,,	Tricorythodes griseus		1		1	0,23	
	Leptohyphes sp.	1			1	0,23	
F/ Caenidae	Caenis sp.	1	3		4	0,93	
	Caenis femina	7		6	13	3,02	
	Caenis catherinae		1	· ·	1	0,23	
O/ Hétéroptères						-,	0,93
F/ Veliidae	Rhagovelia sp.	2	1	1	4	0,93	.,
O/ Diptères			_	_		0,00	31,16
F/ Chironomidae					0	0,00	0.,.0
sF/ Tanypodinae		5	9		14	3,26	
sF/ Orthocladinae		1	3		4	0,93	
sF/ Chironominae	•	_	J		0	0,00	
Tr. Chironomini	1	8	31		39	9,07	
Tr. Tanytarsini		1	76		77	17,91	
O/ Odonates		_	, 0		,,	17,01	0,23
sO/ Zygoptera	•		6				0,00
F/ Coenagrionidae	Coenagrionidae		1		1	0,23	0,00
	- conagnoment					-,	
Nombre total d'individus		221	203	12 5	430		
Nombre de Taxons Minimum		14 1	17 1	5 1	20	0,00	0,00
Maximum		166	76	6		46,74	51,40
			-			- 1. 1	,
indice de Shannon					2,54		
Indice de Simpson					0,27		
Indice d'Equitabilité					0,39		

RAPPORT FINAL Page 129/135

PAL carême 2010

TAXONS	Genre ou espèce	M	Echantillons D1	D2	Total N	Fréq.	F. Cu
ERS	Genre ou espece	IVI	וט	DZ	IN	/0	
							0,46
CI/ Turbellariés				1		0.40	0,46
F/ Dugesiidae				ı	1	0,46	
IOLLUSQUES							1,3
CI/ Gastéropodes				•			1,3
F/ Thiaridae	Thiaridae	1		2	3	1,39	
RTHROPODES							98,1
CI/ Crustacés							23,1
sCI/ Malacostracés							23,1
O/ Décapodes							23,1
F/ Atyidae	Atyidae				0	0,00	
	Micratya poeyi	5	1	7	13	6,02	
F/ Hydropsychidae	Smicridea sp.	1	9	8	18	8,33	
F/ Hydroptilidae	Hydroptilidae				0	0,00	
., ,	Hydroptila sp.		1		1	0,46	
	Metrichia sp.		2		2	0,93	
	Neotrichia sp.	2	_	2	4	1,85	
	Ochrotrichia sp.	_	1	_	1	0,46	
E/ Dhile	· ·		1	2			
F/ Philopotamidae	Chimarra sp.		ı	۷	3	1,39	
F/ Polycentropodidae	Cernotina sp.				0	0,00	
	Polyplectropus sp.	2			2	0,93	
F/ Xiphocentronidae	Xiphocentron fuscum		6		6	2,78	
O/ Ephéméroptères							57,4
F/ Baetidae	Americabaetis sp.	18	14	6	38	17,59	
	Cloedes caraibensis	6	1		7	3,24	
	Fallceon ater	4	1	1	6	2,78	
F/ Leptohyphidae	Leptohyphidae		1		1	0,46	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tricorythodes griseus	27	13	5	45	20,83	
	Leptohyphes sp.	4	8	15	27	12,50	
O/ Hétéroptères	Zopionyphico op.	·	J	.0		12,00	0,4
F/ Veliidae	Rhagovelia sp.	1				0.46	0,4
	nnagovena sp.	'			1	0,46	١
O/ Coléoptères	1				_		9,7
F/ Elmidae	Elmidae				0	0,00	
	Elsianus sp.	1	_	•	1	0,46	
	Hexanchorus sp.	4	1	3	8	3,70	
F/ Psephenidae	Psephenops sp.		8	4	12	5,56	
O/ Diptères							6,4
F/ Chironomidae					0	0,00	
sF/ Tanypodinae		2	1		3	1,39	
sF/ Orthocladinae			1	1	2	0,93	
sF/ Chironominae	•				0	0,00	
Tr. Chironomini	I	5			5	2,31	
Tr. Tanytarsini		1			1	0,46	
F/ Simuliidae	Simulium sp.			1	1	0,46	
	Simulati sp.			1			
F/ Psychodidae		1		'	1	0,46	
F/ Dolichopodidae		1 '			1	0,46	
O/ Odonates	I						0,4
sO/ Anisoptera	1						0,4
F/ Libellulidae	Libellulidae				0	0,00	
	Macrothemys celeno	1			1	0,46	
O/ Lépidoptères							0,4
F/ Pyralidae	<u> </u>			1	1	0,46	L
ombre total d'individus		86	70	60	216	1	
ombre total d'Individus ombre de Taxons		86 18	70 17	60 16	30	}	
linimum		1	17	1		0,00	0,0
laximum		27	14	15		20,83	98,
						-,	;
indice de Shannon					3,79		

RAPPORT FINAL Page 130/135

PIB carême 2010

			Echantillon	S	Total	Fréq.	F. Cum
TAXONS	Genre ou espèce	M	D1	D2	N	%	%
VERS							29,63
CI/ Oligochètes			34	6	40	29,63	29,63
HYDRACARIENS				1	1	0,74	0,74
Polychètes		4	33	30	67	49,63	49,63
MOLLUSQUES							2,96
Cl/ Gastéropodes							2,96
F/ Thiaridae	Thiaridae			2	2	1,48	
F/ Hydrobiidae			1	1	2	1,48	
ARTHROPODES							17,04
Cl/ Crustacés							2,22
sCI/ Malacostracés							2,22
O/ Décapodes							2,22
F/ Palaemonidae	Palaemonidae				0	0,00	
	Macrobrachium sp.	2			2	1,48	
F/ Portunidae	Callinectes sp.	1			1	0,74	
CI/ Insectes							14,81
O/ Diptères							14,81
F/ Chironomidae				1	1	0,74	
Tr. Chironomini		13			13	9,63	
Tr. Tanytarsini		5		1	6	4,44	
Nombre total d'individus		25	68	42	135	1	
Nombre de Taxons		5	3	7	10	1	
Minimum		1	1	1	-	0,00	0,00
Maximum		13	34	30		49,63	49,63
indice de Shannon					1.07		
					1,97		
Indice de Simpson					0,34		

RAPPORT FINAL Page 131/135

PLB carême 2010

		Echantillons	S	Total	Fréq.	F. Cum.
Genre ou espèce	M	D1	D2	N	%	%
						0,00
						0,00
Thiaridae	15	31	49	95	58,64	
						41,36
						3,09
						3,09
						3,09
Atyidae				0	0,00	
Micratya poeyi	4			4	2,47	
Palaemonidae				0	0,00	
Macrobrachium sp.	5			5	3,09	
						34,57
						0,62
Smicridea sp.	1			1	0,62	
						29,63
Americabaetis sp.	3			3	1,85	
Fallceon ater		1	1	2	1,23	
Leptohyphidae	4	2		6	3,70	
Tricorythodes griseus				2	1,23	
Leptohyphes sp.	30	5		35	21,60	
Caenis sp.	2			2	1,23	
						4,32
Rhagovelia sp.	3	1	3	7	4,32	
	69	40	53	162	1	
	10	5	3	11		
	1	1	1		0,00	0,00
	30	31	49		58,64	41,36
				1,97		
				0,39		
				0,30		
	Thiaridae Atyidae Micratya poeyi Palaemonidae Macrobrachium sp. Smicridea sp. Americabaetis sp. Fallceon ater Leptohyphidae Tricorythodes griseus Leptohyphes sp.	Thiaridae 15 Atyidae Micratya poeyi 4 Palaemonidae Macrobrachium sp. 5 Smicridea sp. 1 Americabaetis sp. 3 Fallceon ater Leptohyphidae 4 Tricorythodes griseus 2 Leptohyphes sp. 30 Caenis sp. 2 Rhagovelia sp. 3	Genre ou espèce M D1 Thiaridae 15 31 Atyidae Micratya poeyi 4 4 Palaemonidae Macrobrachium sp. 5 5 Smicridea sp. 1 4 Americabaetis sp. Fallceon ater 1 1 Leptohyphidae 4 2 Tricorythodes griseus 2 2 Leptohyphes sp. 30 5 Caenis sp. 2 3 Rhagovelia sp. 3 1 69 40 10 5 1 1	Genre ou espèce M D1 D2 Thiaridae 15 31 49 Atyidae Micratya poeyi 4 4 49 Palaemonidae Macrobrachium sp. 5 5 Smicridea sp. 1 1 Americabaetis sp. 3 7 Fallceon ater 1 1 Leptohyphidae 4 2 Tricorythodes griseus 2 2 Leptohyphes sp. 30 5 Caenis sp. 2 3 Rhagovelia sp. 3 1 3 69 40 53 10 5 3 1 1 1 1	Canic ou espèce M	Canic ou espèce

RAPPORT FINAL Page 132/135

PRB carême 2010

			Echantillons		Total	Fréq.	F. Cum.
TAXONS	Genre ou espèce	М	D1	D2	N	%	%
VERS							8,33
CI/ Turbellariés							0,33
F/ Dugesiidae				1	1	0,33	
Cl/ Oligochètes		18	6		24	8,00	8,00
HYDRACARIENS		1			1	0,33	0,33
MOLLUSQUES							10,33
CI/ Gastéropodes							10,33
F/ Thiaridae	Thiaridae			16	16	5,33	
F/ Ancylidae	Gundlachia radiata	13			13	4,33	
F/ Hydrobiidae		1		1	2	0,67	
ARTHROPODES							81,00
Cl/ Crustacés							2,00
sCI/ Malacostracés							2,00
O/ Décapodes							2,00
F/ Atyidae	Atyidae				0	0,00	
	Micratya poeyi			3	3	1,00	
	Jonga serrei	2			2	0,67	
F/ Palaemonidae	Palaemonidae				0	0,00	
	Macrobrachium sp.	1			1	0,33	
O/ Ephéméroptères							19,00
F/ Baetidae	Americabaetis sp.	33	2	2	37	12,33	
F/ Leptophlebiidae	Leptophlebiidae				0	0,00	
	Terpides	5			5	1,67	
F/ Leptohyphidae	Leptohyphidae				0	0,00	
	Tricorythodes griseus	1			1	0,33	
F/ Caenidae	Caenis sp.	1	1		2	0,67	
	Caenis femina		2		2	0,67	
	Caenis catherinae	6	4		10	3,33	
O/ Hétéroptères							0,67
F/ Veliidae	Rhagovelia sp.	1			1	0,33	
F/ Gerridae		1			1	0,33	
O/ Diptères							59,33
F/ Chironomidae					0	0,00	
sF/ Tanypodinae		5			5	1,67	
sF/ Chironominae	•				0	0,00	
Tr. Chironomini		61	10	1	72	24,00	
Tr. Tanytarsini		3			3	1,00	
F/ Psychodidae		88			88	29,33	
F/ Ephydridae		10			10	3,33	
Nombre total d'individus	•	251	25	24	300]	-
Nombre de Taxons		25 i 18	25 6	24 6	22		
Minimum		1	1	1		0,00	0,00
Maximum		88	10	16		29,33	81,00
indice de Shannon					3,11		
Indice de Simpson					0,17		
Indice d'Equitabilité							

RAPPORT FINAL Page 133/135

ROS carême 2010

TAXONS	Gonro ou conèce	М	Echantillons D1	D2	Total		F. Cun %
CI/ Oligochètes	Genre ou espèce	M 4	1100	871	N 1975		68,82
HYDRACARIENS		4	1100	1	1975	-	0,03
MOLLUSQUES				1	'	0,03	10,03
							10,03
Cl/ Gastéropodes F/ Thiaridae	Thiaridae	13	87	6	106	3 60	10,03
F/ Physidae	Physa sp.	5	1	171	177		
F/ Ancylidae	Gundlachia radiata		1	5	5		
ARTHROPODES	Gundiacina radiata			3	3	0,17	21,11
Cl/ Crustacés							1,95
sCI/ Malacostracés							1,92
O/ Amphipodes							0,07
F/ Gammaridae		2			2	0.07	0,07
O/ Décapodes						0,07	1,85
F/ Atyidae	Atyidae				0	0.00	1,00
1 / Atyluae	Micratya poeyi		4	22	26		
	Atya innocous		4	14	14		
F/ Palaemonidae	Palaemonidae			14	0		
17 Falaemonidae	Macrobrachium sp.		2		2		
	M. faustinum		2	11	11		
CI/ Insectes	W. Iddstillarii			11	l ''	0,50	19,16
O/ Trichoptères							0,56
F/ Hydropsychidae	Smicridea sp.			1	1	0.03	0,50
F/ Hydroptilidae	Hydroptilidae			-	0		
17 Trydroptindae	Alisotrichia sp.		1	2	3		
	Hydroptila sp.		2	_	2		
	Neotrichia sp.		_	4	4	Fréq. 68,82 0,03 3,69 6,17 0,17 0,07 0,00 0,91 0,49 0,00 0,07 0,38 0,03 0,00 0,10 0,07 0,14 0,21 4,91 0,14 2,40 0,17 0,17 0,28 0,03 0,03 0,28 0,70 6,31 0,10 1,53 0,63 0,00 0,03 0,03 0,24 0,24 0,10 0,00 68,82	
	Zumatrichia sp.		2	4	6		
O/ Ephéméroptères			-			0,21	8,36
F/ Baetidae	Americabaetis sp.	1	20	120	141	4 91	0,00
F/ Leptohyphidae	Leptohyphidae		1	3	4		
17 Eeptonyphidae	Tricorythodes griseus		29	40	69		
	Leptohyphes sp.		2	3	5		
F/ Caenidae	Caenis sp.		1	4	5		
. / Gasaas	Caenis femina		6	2	8	0,07 0,07 0,07 0,00 0,91 0,49 0,00 0,07 0,38 0,00 0,10 0,07 0,14 0,21 4,91 0,17 0,17 0,28 0,28 0,00 0,03 0,03 0,03 0,03 0,03 0,03 0,0	
	Caenis catherinae	2	3	3	8		
O/ Coléoptères	Caerna Garrennac		3	3		0,20	0,03
F/ Elmidae	Elmidae				0	0.00	0,00
17 Emiliado	Hexanchorus sp.			1	1		
O/ Diptères	J			-		0,00	10,2
F/ Chironomidae			8		8	0.28	10,2
sF/ Tanypodinae			14	6	20		
sF/ Orthocladinae		16	78	87	181		
sF/ Chironominae	•		3	0.	3		
Tr. Chironomini	I	1	22	21	44		
Tr. Tanytarsini			15	3	18		
F/ Ceratopogonidae				-	0		
sF/ Ceratopogoninae			1		1		
sF/ Forcypomyinae			-	1	1		
F/ Empididae			1	6	7		
F/ Psychodidae			1	6	7		
F/ Ephydridae			3	Ü	3		
· ·	1					0,10	
Nombre total d'individus		44	1407	1419	2870		
Nombre de Taxons Minimum		8 1	25 1	28 1	35	0.00	0,00
Maximum		1 16	1100	871			68,8
ITTIGATITUTT		10	1100				· · · · · · · · ·

indice de Shannon 1,99
Indice de Simpson 0,49
Indice d'Equitabilité 0,31

RAPPORT FINAL Page 134/135

ASCONIT Consultants

Agence Caraïbes

N°5 les Horizons, Quartier Lourdes 97224 DUCOS

Tél.: 05.96.63.55.78 / Fax: 05.96.63.55.78

Mobiles: 06.96.25.54.10 E-mail: nicolas.bargier@asconit.com

