DEAL de Martinique

DEAL MARTINIQUE

Pointe de Jaham BP 7212 97274 Schoelcher Cedex

97200 Fort-de-France

Cours d'eau de Martinique

Suivi du réseau DCE des masses d'eau superficielles terrestres de Martinique au titre de l'année 2012

Rapport Final

ZI Champigny 97224 DUCOS Tél. 05.96.63 55 78 Mobile: 06.96.25.54.10

caraibes@asconit.com

Principaux Contacts:

DEAL de la Martinique : SEMA

• Corinne FIGUERAS Tél.: 05.96.71.30.05

ASCONIT CONSULTANTS:

Charlotte VERGES charlotte.verges@asconit.comJulien PLANCHON julien.planchon@asconit.com

Sommaire

1.	INT	FRODUCTION	. 7
2.	SIT	TES, MATERIELS ET METHODES	. 9
:	2.1.	Presentation des sites	9
	2.1.1		
	2.1.2		
	2.1.3	· · · · · · · · · · · · · · · · · · ·	
	2.2.	CARACTERISATION DES CONDITIONS PHYSICO-CHIMIQUES	
2	2.3.	ANALYSE FLORISTIQUE DES DIATOMEES	
	2.3.1		
	2.3.2 2.3.3	. /	
	2.3.3 2.4.		
-	2.4. 2.4.1		
	2.4.2	2	
	2.4.3		
2	2.5.	ETUDE DE L'ICHTYOFAUNE ET DES MACROCRUSTACES	.20
	2.5.1		
	2.5.2		
	2.5.3		
	2.5.4		
3.	RES	SULTATS	24
	3.1.	CARACTERISATION PHYSICO-CHIMIQUE	.24
	3.1.1	1. Paramètres physico-chimiques in situ	.24
	3.1.2	2. Eléments physico-chimiques généraux sur les sites de référence	.27
3	3.2.	ANALYSE FLORISTIQUE DES DIATOMEES	
	3.2.1		
	3.2.2		
	3.2.3 3.2.4		
	3.2 3.3.	ETUDE DE LA MACROFAUNE BENTHIQUE DES STATIONS DU RESEAU DE REFERENCE	
•	3.3.1		
	3.3.2		
	3.3.3	3. Abondance et richesse taxonomique	.49
	3.3.4		
	3.3.5		
	3.3.6		
	3.4.		
	3.4.1 3.4.2		
	3.4.3		.03 72
	3.4.4		
	3.4.5		
	3.4.6		
	3.4.7		
	3.4.8	The state of the s	
	3.4.9 3.4.1	· · · · · · · · · · · · · · · · · · ·	
	3.4.2	,	
1		NTHESE GENERALE	
	4.1.	ETAT CHIMIQUE	
	4.2.	ETAT BIOLOGIQUE	
5.	DEF	FINITION DE LA REFERENCE 1	08
_	5.1.	BILAN DE LA SITUATION	
_	5.2.	Types de masses d'eau	
Ţ	5.3.	Calcul de la reference	112
6.	ANI	NEXES 1	17

DEAL de la Martinique (972)

Liste des tableaux

Tableau 1. Presentation des stations de reference 2012 pour la Martinique9
Tableau 2. Présentation des stations de contrôle de surveillance, opérationnel et d'enquête 2012 pour la Martinique12
Tableau 3. Date des prélèvements de diatomées – campagne 2012 – Stations de Référence17
Tableau 4. Date des prélèvements de diatomées - campagne 2012 - Stations de Surveillance17
Tableau 5. Dates d'intervention, conditions météorologiques et hydrologie sur les stations du réseau de référence Martinique en 2012
Tableau 6. Dates d'intervention, conditions météorologiques et hydrologie sur les stations de contrôle de surveillance et d'enquête Martinique au carême 201220
Tableau 7. Paramètres physico-chimiques in situ mesurés sur les stations du réseau de référence 2012 de Martinique25
Tableau 8. Paramètres physico-chimiques <i>in situ</i> mesurés sur les stations du réseau de surveillance, de contrôle opérationnel et d'enquête 2012 de Martinique25
Tableau 9. Paramètres physico-chimiques généraux (percentile 90%) des stations sur la période 2005-2012 et état associé selon l'annexe 4 du Guide technique de mars 200929
Tableau 10. Paramètres physico-chimiques généraux (percentile 90%) des stations sur la période 2005-2012 et état associé selon l'annexe 4 du Guide technique de mars 200930
Tableau 11. Paramètres physico-chimiques généraux mesurés sur les stations de référence au cours de la période 2005-2012 et état associé selon la version 2 du SEQ Eau
Tableau 12. Paramètres physico-chimiques généraux mesurés sur les stations de référence au cours de la période 2005-2012 et état associé selon la version 2 du SEQ Eau
Tableau 13 : Richesse spécifique et indice de diversité des peuplements – campagne 2012 – Stations de Référence36
Tableau 14 : Richesse spécifique et indice de diversité des peuplements – campagne 2012 – Stations de surveillance
Tableau 15 : Indices diatomiques (IPS et IBD) et classes de qualité – campagne 2012 – Stations de Référence 39
Tableau 16 : Indices diatomiques (IPS et IBD) et classes de qualité – campagne 2012 – Stations de surveillance40
Tableau 17 : Evolution des valeurs indicielles de 2005 à 2012 - Stations de Référence42
Tableau 18 : Evolution des valeurs indicielles de 2007 à 2012 - Stations de surveillance43
Tableau 19. Prélèvements des macroinvertébrés benthiques (couple substrat/vitesse) sur les stations du réseau de référence 2012 de Martinique46
Tableau 20. Prélèvements des macroinvertébrés benthiques (couple substrat/vitesse) sur les stations du réseau RCS 2012 de Martinique47
Tableau 21. Paramètres physico-chimiques <i>in situ</i> de l'eau des stations du réseau de référence 2012 de Martinique48
Tableau 22. Paramètres physico-chimiques <i>in situ</i> de l'eau des stations de contrôle de surveillance et d'enquête 2012 de Martinique, en période de carême49
Tableau 23. Abondances en macroinvertébrés benthiques des stations de références suivies depuis 2006 en période de carême
Tableau 24. Richesse taxonomique au carême 2012 pour les stations du réseau de référence51
Tableau 25. Abondances en macroinvertébrés benthiques des stations des réseaux de contrôle suivies depuis 2007 en période de carême
Tableau 26. Richesse taxonomique au carême 2012 et depuis 2010 pour les stations du réseau de contrôle et de surveillance

RAPPORT FINAL Page 4/216

Tableau 27. Taxon dominant sur chaque station de référence au carême 2012
Tableau 28. Taxon dominant sur chaque station du réseau de contrôle et surveillance au carême 201259
Tableau 29. Valeurs des différents indices structuraux calculés pour les sites de référence sur la base des données de carême 2012
Tableau 30. Valeurs des différents indices structuraux calculés pour les sites du réseau de contrôle et surveillance de la Martinique sur la base des données de carême 201263
Tableau 31. Evolution des faciès échantillonnés entre 2007 et 2012*71
Tableau 32. Composition en espèces de poissons et macrocrustacés des réseaux de référence, surveillance, contrôle opérationnel et enquête75
Tableau 33. Evolution interannuelle de la composition de la carcinofaune et de la piscifaune en abondance relative sur les sites de référence
Tableau 34. Evolution interannuelle de la composition de la carcinofaune et de la piscifaune en abondance relative sur les sites de surveillance93
Tableau 35. Synthèse générale de l'expertise piscicole98
Tableau 36. Résultats des analyses physico-chimiques réalisées sur le biote dans les stations des réseaux de référence, année 2012101
Tableau 37. Résultats des analyses physico-chimiques réalisées sur le biote dans les stations des réseaux de surveillance, de contrôle opérationnel et d'enquête, année 2012103
Tableau 38. Synthèse des paramètres physico-chimiques déclassants des stations de référence pour le suivi 2005-2012104
Tableau 39. Synthèse des indices biologiques des stations de référence pour le suivi 2012105
Tableau 40. Tableau de synthèse des indicateurs biologiques en 2012107
Tableau 41. Objectif de qualité des masses d'eau du SDAGE Martinique en cours de révision en 2009109
Tableau 42. Limites de classes de la référence IPS :
Tableau 43. Limites de classes de la référence IBD114
Tableau 44. Limites de classes de la référence Shannon invertébrés benthiques115
Tableau 45. Limites de classes de la référence Equitabilité invertébrés benthiques116
Liste des figures
Figure 1. Carte de localisation générale des stations du réseau de référence10
Figure 2. Carte de localisation générale des stations du réseau de surveillance, opérationnel et d'enquête13
Figure 3. Richesse et diversité spécifique des peuplements - campagne 2012 – Stations de Référence37
Figure 4. Richesse et diversité spécifique des peuplements - campagne 2012 – Stations de surveillance39
Figure 5. Répartition de l'abondance entre les grands groupes taxonomiques pour chaque site de référence au carême 201254
Figure 6. Répartition de l'abondance entre les grands groupes taxonomiques pour chaque site du réseau de contrôle et de surveillance au carême 201258
Figure 7. Valeurs des différents indices structuraux calculés sur les sites de références entre 2005 et 2012 (moyenne ± ET). Les résultats des campagnes de carême et hivernage sont pris en comptes62
Figure 8. Valeurs des différents indices structuraux calculés sur les sites du réseau de contrôle, d'enquête et de surveillance entre 2007 et 2012 (moyenne ± Min et Max)65
Figure 9. Répartition des faciès échantillonnés sur les stations de référence - Année 201267
Figure 10. Evolution des faciès échantillonnés entre 2007 et 201268
Figure 11. Répartition des faciès échantillonnés sur les stations de surveillance – Année 201269

RAPPORT FINAL

Figure 12. Richesse en espèces des stations de référence – Carême 2012	72
Figure 13. Richesses observées en 2012 et richesses moyennes sur la période 2007-2012 (26 stations)	73
Figure 14. Répartition spatiale des richesses spécifiques totales, carcinofaunistiques et piscicoles pour l stations du suivi 2012	
Figure 15. Densités en poissons, crustacés et totale sur les sites des réseaux de suivi DCE 2012	77
Figure 16. Evolution des densités sur les stations DCE entre 2009 et 2012.	78
Figure 17. Biomasse totale en 2012 sur les stations du réseau DCE	78
Figure 18. Biomasses par groupes sur les sites du réseau DCE 2012	79
Figure 19. Répartition spatiale des densités et biomasses sur les sites du réseau DCE 2012	80
Figure 20. Abondances relatives en poissons et crustacés pour les stations du suivi DCE – Année 2012	81
Figure 21. Répartition spatiale des dominances de crustacés et de poissons sur les stations du réseau DCE 2012.	
Figure 22. Abondances relatives entre poissons et crustacés pour les sites de références – Années 2007 2012	
Figure 23. Répartition en abondance relative des familles de crustacés et de poissons sur les sites de référer - Année 2012	
Figure 24. Répartition en abondance relative des familles de crustacés et de poissons sur les sites surveillance – Année 2012	
Figure 25. Potentiel reproducteur des crustacés pour les du suivi DCE - Année 2012	94
Figure 26. Analyse comparative de la représentation des reproducteurs à travers les grandes familles crustacés.	
Figure 27. Evolution du pourcentage de crustacés grainés entre 2011 et 2012	95
Figure 28. Répartition des individus grainés sur les stations DCE 2012 en Martinique	96
Figure 29. Objectif global des cours d'eau de Martinique, sans chlordécone. SDAGE 20091	10

RAPPORT FINAL Page 6/216

DEAL de la Martinique Suivi DCE Martinique (972) Année 2012

1. Introduction

La directive-cadre européenne sur l'eau (DCE) a imposé la mise en place d'objectifs environnementaux fixés par masse d'eau. Chaque masse d'eau est étudiée et un objectif daté d'atteinte du bon état (écologique et chimique) lui est attribué.

En ce qui concerne la Martinique, la révision du SDAGE a permis la redéfinition des masses d'eau et la révision des objectifs attribués.

Afin de juger du bon état d'un cours d'eau, il faut au préalable établir une référence de bon état.

Le recueil de données écologiques et chimiques sur neuf stations d'étude depuis 2005 a pour but d'établir les valeurs de bon état pour les différents indices écologiques utilisés dans le cadre de l'évaluation DCE.

La détermination de cette valeur de bon état est rendue difficile du fait du contexte local tropical et insulaire, qui implique une connaissance restreinte et en cours d'acquisition des espèces locales (macro-invertébrés benthiques, diatomées, poissons et crustacés). Cela donne lieu à une interprétation « douteuse » des indices, qui pourtant sont démontrés comme étant fiables et représentatifs des conditions du milieu dans le contexte métropolitain.

A l'issue du suivi du réseau pour l'année 2008, plusieurs éléments ont été travaillés afin de pouvoir émettre des valeurs de références :

- le regroupement des stations pour le calcul d'une référence par HER ;
- les indices utilisés pour servir de référence.

Par l'examen des résultats pour les différents indicateurs (diatomées, invertébrés, poissonscrustacés) étudiés depuis 2005 sur les stations dites de référence, il a été choisi de baser la référence uniquement sur l'**IPS** (Indice de Polluo-sensibilité diatomique) en priorité et dans une moindre mesure sur l'IBD (Indice Biologique Diatomique) pour les diatomées et les **indices structuraux de Shannon et d'Equitabilité pour les invertébrés benthiques**. Néanmoins, l'amélioration des indices normalisés pour le département est en constante progression et l'élaboration d'indices définitifs devrait aboutir rapidement avec les conclusions des Atlas diatomées (2009-2012) et macroinvertébrés benthiques (2010-2013). Ces deux projets sont menés en commun avec la Guadeloupe et en voie de finalisation.

La valeur de référence en 2011 est donnée par la médiane calculée à l'aide des données recueillies de 2005 à 2011 :

Pour l'IPS:

	Médiane	ET
Nord	14,75	1,896
Sud	10,35	2,742
Nord centre	18,8	1,308

Pour l'IBD:

	Mediane	ET
Nord	15,45	1,829
Sud	10,5	2,859
Nord centre	19,6	0,519

RAPPORT FINAL Page 7/216

Pour les indices structuraux invertébrés benthiques, le découpage se limite à deux zones Nord et Sud dont les limites sont les mêmes que pour les diatomées.

Les valeurs de références basées sur l'indice structural de Shannon sont pour les zones :

	Médiane	ET
Nord	3,49	0,42
Sud	2,99	0,82

Les valeurs de références basées sur l'indice structural d'équitabilité sont pour les zones :

	Mediane	ET
Nord	0,70	0,11
Sud	0,51	0,18

L'objectif du suivi 2012 est d'obtenir des données supplémentaires afin de réduire les écart-type sur les calculs et ainsi préciser la valeur de référence. Ce travail est primordial pour la zone sud, dont la définition de la référence est rendue difficile du fait que les bassins versants sont impactés dans leur quasi intégralité.

Conjointement à cet effort de caractérisation des 9 sites de référence, le programme de suivi des cours d'eau de la Martinique a été défini pour l'année 2012. Il doit répondre à 4 objectifs principaux :

- la poursuite du contrôle de surveillance des masses d'eau de surface continentales prévu par la Directive Cadre sur l'Eau (circulaire DCE 2006/16 du 13 juillet 2006),
- la mise en œuvre des contrôles opérationnels (circulaires DCE2006/16 du 13 juillet 2006 et DCE 2007/24 du 31 juillet 2007) à partir de cette année, sur les masses d'eau en RNABE à l'horizon 2015,
- la mise en place de contrôles d'enquête sur de nouveaux points de suivi de pollutions potentielles,
- la poursuite de l'acquisition de données pour la définition du « bon état écologique » de référence pour les masses d'eau de la Martinique.

A cette fin, quatre réseaux ont été définis :

- le réseau de contrôle de surveillance (15 stations),
- le réseau de contrôle opérationnel (18 stations),
- le réseau de contrôle d'enquête (2 stations),
- le réseau de sites de référence, (9 stations),

Ces réseaux font l'objet d'un suivi pour l'année 2012 pour lequel des analyses physicochimiques des eaux superficielles (stations de référence uniquement), ainsi que des analyses hydrobiologiques sont menées sur les stations définies par la DEAL de la Martinique. Des analyses physico-chimiques sur biote (poissons et macrocrustacés) sont également réalisées dans le cadre de ce suivi.

Le présent document constitue le compte rendu final relatif aux stations des réseaux de référence, de contrôle de surveillance, de contrôle opérationnel et d'enquête pour ce qui concerne :

- La mise à jour de la définition de l'état de référence sur les stations du réseau de référence ;
- Le suivi 2012 des peuplements biologiques sur l'ensemble des réseaux de mesure.

RAPPORT FINAL Page 8/216

2. Sites, matériels et méthodes

9 stations de référence et **22 stations** rattachées aux contrôles de surveillance, opérationnel et d'enquête sont échantillonnées (dont la station Lézarde Palourde qui fait également partie du réseau de référence). Les suivis des peuplements biologiques menés dans le cadre de ces programmes (diatomées, macrofaune benthique et ichtyofaune) ont été réalisés une fois annuellement en carême. Les éléments hydro-morphologiques ont fait l'objet d'une vérification des observations faites au cours des précédentes années. Conformément aux exigences de la DCE (arrêté du 25/01/2010), des analyses sur biote sont également réalisées dans le but de suivre l'état de contamination des Sicydium et des Macrobrachium par la chlordécone.

2.1. Présentation des sites

2.1.1. Réseau de Référence

9 stations de référence ont été suivies dans le cadre de la campagne d'échantillonnage de carême 2012. Cinq stations sont suivies depuis 2005, deux stations sont suivies depuis 2008 (Tunnel Didier sur la rivière Case Navire, Trace des Jésuites sur la rivière du Lorrain) et 2 stations suivies depuis 2005 ont été abandonnées en 2008 et reprises en 2009 (La Broue sur la rivière du Vauclin, Beauregard sur la rivière Pilote). L'ensemble des stations est présenté dans le tableau 1 et figure 1.

Tableau 1. Présentation des stations de référence 2012 pour la Martinique.

Entité		Code	Code	Coordonnées WGS84					
hydrographique	Nom station	Asconit Atlas	Sandre	am	ont	aı	Alt.		
		Alias		x	у	x	у		
GRANDE RIVIERE	Trou Diablesse	GRD	08101101	696250	1643929	696324	1644090	45	
CERON	Habitation Céron	CER	08014101	691953	1640467	691794	1640424	30	
CARBET	Source Pierrot	CAR	08320101	720422	1602503	701674	1629625	270	
LORRAIN	Trace des Jésuites	LOR	08201101	706077	1631088	706115	1631217	120	
GALION	Gommier	GAL	08221101	711278	1629499	711262	1629583	310	
LEZARDE	Palourde	PAL	8501101	709944	1627925	710050	1627862	250	
CASE NAVIRE	Tunnel de Didier	CAN	08301101	705139	1621486	705162	1621467	200	
VAUCLIN	La Broue	VAU	08703101	730739	1608742	730829	1608795	19	
PILOTE	Beauregard	PIL	08811101	729087	1606036	729013	1606072	40	

^{*} Valeurs d'altitudes correspondant aux relevés GPS effectués lors de la campagne 2009

DEAL de la Martinique Suivi DCE Martinique (972) Année 2012

Figure 1. Carte de localisation générale des stations du réseau de référence.

2.1.2. Réseau de contrôle de surveillance, opérationnel et d'enquête

Ce réseau est composé de 22 stations de trois types distincts (certaines appartenant à deux types) :

- 15 stations de contrôle de surveillance,
- 18 sont des stations de contrôle opérationnel, dont 13 sont également des stations de surveillance
- 2 stations de contrôle d'enquête

Elles ont été suivies dans le cadre de la campagne d'échantillonnage de carême 2012. La station Palourde Lézarde est en 2012 à la fois une station de référence et une station de surveillance.

Les stations sont présentées plus précisément dans le tableau suivant.

RAPPORT FINAL Page 10/216

RAPPORT FINAL Page 11/216

Tableau 2. Présentation des stations de contrôle de surveillance, opérationnel et d'enquête 2012 pour la Martinique.

						Coord	onnées WG	S84	
Entité hydrographique	Nom station	Code Asconit	Code SANDRE	Type station	an	nont	a	Alt.*	
, 5		7.500			x	у	x	у	
GRANDE RIVIERE	Amont stade Grand'Rivière	GRS	8102101	Surveillance, Opérationnel	696 196	1 644 364	696 307	1 644 431	30
ROXELANE	St-Pierre (ancien pont)	ROS	8329101	Surveillance, Opérationnel	696 106	1 631 298	696 106	1 631 298	7
CAPOT	Pr AEP-Vivé Capot	CAV	8115101	Surveillance, Opérationnel	704 672	1 640 447	704 748	1 640 542	50
SAINTE MARIE	Pont RD24 St-Marie	BER	8213101	Surveillance, Opérationnel	714 639	1 634 206	714 639	1 634 206	14
CARBET	Fond Baise	CAF	8322101	Surveillance, Opérationnel	697 164	1 627 610	697 164	1 627 610	46
LEZARDE	Gué de la Désirade	LEG	8521101	Surveillance, Opérationnel	715 897	1 622 096	715 897	1 622 096	35
LEZARDE	Pont RN1	LEP	8521102	Surveillance, Opérationnel	716 926	1 616 042	717 040	1 617 140	12
PETITE LEZARDE	Pont Belle-Ile	PLB	8504101	Surveillance, Opérationnel	716 103	1 623 345	716 103	1 623 345	54
LEZARDE	Palourde	PAL	8501101	Surveillance	709944	1627925	710050	1627862	250
LORRAIN	Amont confluence Pirogue	LOP	8203101	Surveillance	705 760	1 630 873	705 760	1 630 873	120
GALION	Grand Galion	GAG	8225101	Surveillance, Opérationnel	719 611	1 628 057	719 611	1 628 057	8
MADAME	Pont de Chaîne	MAC	8423101	Surveillance, Opérationnel	707 832	1 616 898	707 832	1 616 898	18
SALEE	Petit Bourg	COP	8803101	Surveillance, Opérationnel	719 588	1 609 280	719 588	1 609 280	9
OMAN	Dormante	OMD	8824101	Surveillance, Opérationnel	719 758	1 602 517	719 698	1 602 495	9
CASE NAVIRE	Case Navire (bourg Schoelcher)	CBN	8302101	Surveillance, Opérationnel	704 663	1 617 496	704 663	1 617 496	8
LORRAIN	Séguineau	LOS	8205101	Opérationnel	710 261	1 639 662	710 261	1 639 662	10
MONSIEUR	Pont de Montgérald	MOM	8412102	Opérationnel	704 666	1 617 492	704 666	1 617 492	12
PETITE RIVIERE	Brasserie Lorraine	PRB	8533101	Opérationnel	718 203	1 617 851	718 203	1 617 851	15
Petite Pilote	La Mauny	PPM	8813101	Enquête	-	-	-	-	5
Rivière Blanche	Pont de l'Alma	BLA	8511101	Enquête	705278	1626513	705034	1626331	-
Deux Courants	Pont Séraphin	DCS	8616101	Opérationnel	725619	1616531	725727	1616577	-
Grande Rivière Pilote	Amont Bourg Grande Rivière Pilote	PIBam	8813103	Opérationnel	-	-	-	-	-

^{*} Valeurs d'altitudes correspondant aux relevés GPS effectués lors de la campagne 2009.

.RAPPORT FINAL Page 12/216

Figure 2. Carte de localisation générale des stations du réseau de surveillance, opérationnel et d'enquête.

2.1.3. Conditions météorologiques

Contrairement au carême 2011 qui fut particulièrement humide, le mois de mars 2012 correspond à un mois sec de carême. C'est sur le Nord Caraïbe et la partie montagneuse de l'île que les pluies ont été les plus déficitaires. Le déficit pluviométrique observé sur la majeure partie de l'île n'a pas été accompagné d'un ensoleillement particulièrement élevé, bien au contraire : le mois de mars 2012 est le moins ensoleillé depuis 17 ans. Les nuages ont été prédominants et la brume plus fréquente que d'habitude.

On notera toutefois qu'un temps durablement pluvieux et donnant de bonnes quantités d'eau s'est installé sur la Martinique à la fin du mois de février et jusqu'au début du mois de mars sur l'île. Ceci explique que la plupart des cours d'eau ont été prélevés en conditions de « moyennes eaux » (Source : Météo France, bulletin climatique mensuel http://www.meteo.gp/alaune/bcm/bcmmart.pdf).

2.2. Caractérisation des conditions physico-chimiques

Des mesures *in situ* des principaux paramètres physico-chimiques (température, pH, conductivité, oxygène dissous et taux de saturation) sont réalisées afin de caractériser sommairement les conditions physico-chimiques de chaque site de l'ensemble des réseaux. Ces mesures permettent en outre d'appréhender les variations majeures des conditions physico-chimiques « de base » sur les stations au cours des différentes campagnes.

Les mesures sont réalisées au cours de la campagne de carême, à l'aide d'une sonde multiparamétrique conformément aux prescriptions nationales.

2.3. Analyse floristique des diatomées

Les **Diatomées** font partie des meilleurs bio-indicateurs utilisés en routine dans l'évaluation de la qualité des cours d'eau. L'expérience accumulée dans l'application de cet indicateur en Martinique et plus largement dans les milieux insulaires permet au fur et à mesure d'affiner la connaissance sur l'écologie des taxons locaux. Plus précisément, les avancées en matière de systématique réalisées dans le cadre du programme d'étude et de recherche « Mise au point d'un indice de bio-indication de la qualité de l'eau à partir des diatomées en Martinique » ont été utilisées lors de l'analyse de ces échantillons. Les taxons ont cependant été encodés de manière cohérente avec les études précédemment réalisées dans le cadre des réseaux de référence et de surveillance.

Conformément à la circulaire DCE 2004/08, les analyses de la flore diatomique permettent de définir :

- La composition taxonomique des peuplements,
- Leur diversité,
- L'abondance relative des différentes espèces identifiées.

Rapport Final Page 14/216

2.3.1. Protocole de terrain

Les prélèvements de diatomées sont effectués conformément à la norme <u>NF T 90-354 de</u> décembre 2007.

L'échantillonnage s'effectue en priorité en faciès lotique, sur les supports durs naturels le plus stable possible. Le prélèvement sur support meuble (sable, vases,...) et sur bois sont formellement proscrits pour le calcul de l'IBD.

La surface à échantillonner afin d'obtenir une flore diatomique représentative est d'environ 100 cm² minimum. L'échantillonnage est réalisé sur 5 substrats différents au minimum (20 cm² par substrat) ; ils sont rincés dans le courant pour éliminer les particules et/ou valves éventuellement déposées. L'échantillon ainsi récolté sur le terrain est conditionné immédiatement par fixation au formol neutralisé (10 %).

Notre expérience des milieux tropicaux relativement pauvres en matériel diatomique nous pousse maintenant à augmenter notre effort d'échantillonnage de manière systématique : une dizaine de substrats ont été prélevés, permettant de recueillir du matériel diatomique sur une surface total d'au moins 1000 cm².

Une feuille de terrain, qui résume les conditions de prélèvement, est systématiquement remplie sur place. Les feuilles de terrain "diatomées" sont regroupées en annexe.

2.3.2. Analyse en laboratoire

La préparation, le montage des lames de diatomées et l'analyse des échantillons ont été réalisés conformément à la <u>norme NF T 90-354 de décembre 2007</u>.

Toutefois, la méthodologie a également été adaptée. En effet, 2 cycles complets de nettoyage au peroxyde d'hydrogène (H_2O_2) concentré et acide chlorhydrique (élimination des particules minérales et des carbonates), suivi de rinçages successifs à l'eau déminéralisée sont très souvent nécessaires pour obtenir des lames de bonne qualité et garantir ainsi la fiabilité des inventaires. Ces opérations sont maintenant systématiquement réalisées dans le cadre des échantillons prélevés en Martinique et Guadeloupe.

La détermination des espèces et le dénombrement des unités diatomiques ont ensuite été réalisés grâce à un microscope de type LEICA DMLB muni du contraste de phase et d'une caméra (acquisition d'image et mesure des taxons). Le comptage est effectué sur 400 individus minimum (l'IBD ne peut être calculé en dessous de ce nombre).

La saisie codifiée de chaque comptage, à l'aide du logiciel OMNIDIA, permettra d'obtenir la liste floristique, l'estimation de l'abondance relative des taxa et le calcul de plusieurs indices diatomiques.

Deux indices diatomiques sont calculés : **l'indice de Polluosensibilité Spécifique** (IPS) (Cemagref, 1982) et **l'indice Biologique Diatomées** (IBD) (méthode normalisée AFNOR NF T 90-354, juin 2000 ; Prygiel et Coste, 2000).

- l'Indice de Polluosensibilité Spécifique (I.P.S.) :
 - Il est considéré comme l'indice le plus précis. Contrairement à d'autres indices qui utilisent une liste de taxa limitée pour leur calcul, l'IPS utilise toutes les espèces (sauf exception). Il reste néanmoins difficile à utiliser car il nécessite une bonne connaissance de l'autoécologie de toutes les espèces. Les tests menés antérieurement sur les cours d'eau de Martinique, de Guadeloupe et de la Réunion ont démontré la pertinence d'utiliser cet indice en milieu tropical insulaire.
- > l'Indice Biologique Diatomées (I.B.D.) :
 - Contrairement à l'IPS, l'IBD se base sur un nombre limité de taxa correspondant aux 209 taxa les plus fréquemment rencontrés dans les rivières de France métropolitaine. Dernièrement, cet indice a été révisé (Norme NF T 90-354 de

Rapport Final Page 15/216

décembre 2007). Il comporte dorénavant 1478 taxa dont 476 synonymes anciens et 190 formes anormales. **Ce sont donc 812 taxa de rang spécifique ou infra-spécifique qui sont pris en compte par le nouvel IBD**. Bien qu'il reste peu de taxa présents sur le réseau métropolitain à ne pas être pris en compte par l'IBD, c'est encore le cas de certains taxa inventoriés en Martinique. On observe cependant une assez bonne corrélation entre les valeurs de l'IBD et celles de l'IPS.

L'IPS et l'IBD varient de 1 (eaux « très polluées ») à 20 (« eaux pures »).

2.3.3. Déroulement des prélèvements

Les prélèvements de la flore de diatomées ont été menés conformément au protocole d'échantillonnage présenté précédemment. Les dates des prélèvements sont précisées dans les tableaux 3 et 4 présentés ci-après.

Les conditions de prélèvements sont signalées dans la fiche terrain remplie sur place, lors du prélèvement (Annexe 2).

Rapport Final Page 16/216

Tableau 3. Date des prélèvements de diatomées – campagne 2012 – Stations de Référence

N° Echantillon	cours d'eau	commune	localisation	Date prélèvement	code SANDRE	préleveur	fixateur	substrat	protocole	préparateur	analyste
20120091	Grande Rivière	Grand Rivière	Trou Diablesse	13/03/2012	08101101	AEG	Formol	blocs, pierres	IBD	AEG	AEG
20120094	Lorrain	Lorrain	Trace des Jésuites	19/03/2012	08201101	SCO	Formol	blocs, pierres	IBD	AEG	AEG
20120098	Galion	Gros Morne	Gommier	15/03/2012	08221101	SCO	Formol	blocs, pierres	IBD	AEG	AEG
20120101	Grande Rivière Pilote	Rivière Pilote	Beauregard	15/03/2012	08811101	AEG	Formol	blocs, pierres	IBD	AEG	AEG
20120108	Lézarde	Gros Morne	Palourde Lézarde	15/03/2012	08501101	AEG	Formol	blocs, pierres	IBD	AEG	AEG
20120112	Duclos	Fort de France	Tunnel Didier	19/03/2012	08301101	AEG	Formol	blocs, pierres	IBD	AEG	AEG
20120115	Carbet	Fond Saint Denis	Source Pierrot	14/03/2012	08320101	AEG	Formol	blocs, pierres	IBD	AEG	AEG
20120117	Vauclin	Vauclin	Pont D5 - La Broue	13/03/2012	08703101	AEG	Formol	blocs, pierres	IBD	AEG	AEG
20120119	Anse Céron	Le Prêcheur	Céron	14/03/2012	08014101	AEG	Formol	blocs, pierres	IBD	AEG	AEG

Tableau 4. Date des prélèvements de diatomées – campagne 2012 – Stations de Surveillance

N° Echantillon	cours d'eau	commune	localisation	Date prélèvement	code SANDRE	préleveur	fixateur	substrat	protocole	préparateur	analyste
20120090	Grande Rivière	Grand Rivière	Stade de Grand Rivière	13/03/2012	08102101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120092	Capot	Lorrain	Pr AEP-Vivé-Capot	13/03/2012	08115101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120093	Lorrain	Lorrain	Amont confluent Pirogue	13/03/2012	08203101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120095	Lorrain	Lorrain	Séguineau	13/03/2012	08205101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120096	Bezaudin	Sainte Marie	Pont RD24 Sainte-Marie	13/03/2012	08213101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120097	Galion	Trinité	Grand Galion	13/03/2012	08225101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120099	Deux courants	François	Pont Séraphin	13/03/2012	08616101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120100	Grande Rivière Pilote	Rivière Pilote	Pilote	15/03/2012	08813103	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120102	Petite Rivière Pilote	Rivière Pilote	Pont Madeleine	15/03/2012	08812101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120103	Oman	Sainte Luce	Dormante	15/03/2012	08824101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120104	Rivières des Coulisses	Rivière Salée	Petit Bourg	15/03/2012	08803101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120105	Lézarde	Lamentin	PONT RN1	15/03/2012	08521102	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120106	Lézarde	Lamentin	Gué de la Désirade	15/03/2012	08521101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120107	Lézarde	Lamentin	Pont Belle-Île	15/03/2012	08504101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120109	Blanche	Saint Joseph	Pont de l'Alma	14/03/2012	08511101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120110	Monsieur	Fort de France	Pont de Montgérald	14/03/2012	08412102	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120111	Madame	Fort de France	Pont de Chaînes	14/03/2012	08423101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120113	Case Navire	Schoelcher	Case Navire (bourg Schœlcher)	14/03/2012	08302101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120114	Carbet	Carbet	Fond Baise	14/03/2012	08322101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120116	Roxelane	Saint Pierre	Saint Pierre (ancien pont)	14/03/2012	08329101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG
20120118	Petite Rivière	Lamentin	Brasserie Lorraine	15/03/2012	08533101	AEG	Formol	Blocs, pierres	IBD	AEG	AEG

RAPPORT FINAL Page 17/216

2.4. Etude de la macrofaune benthique

La faune d'un hydrosystème intègre la variabilité spatio-temporelle de l'environnement. Toute modification du milieu est donc susceptible d'impacter cette faune.

La grande sensibilité des invertébrés benthiques aux changements de leur environnement (modifications physiques, biologiques et/ou physico-chimiques, d'origines naturelles ou anthropiques) et leur rôle clef dans le fonctionnement des écosystèmes aquatiques font de ces organismes de bons indicateurs locaux. Leurs peuplements peuvent donc être étudiés, d'un point de vue qualitatif (taxons présents) et quantitatif (dénombrements des organismes), pour estimer l'intégrité biotique des milieux aquatiques, en parallèle avec un suivi de la qualité physico-chimique de l'eau.

2.4.1. Principe de la méthode

Conformément aux prescriptions du cahier des charges, le protocole de prélèvement de la faune des macroinvertébrés benthiques est issu des préconisations de la circulaire DCE 2007-22, rectifiée DCE 2008/27 DCE du 20 mai 2008, relative à la constitution et la mise en œuvre du réseau des sites de référence pour les eaux douces de surface (30 mars 2007).

Sur chaque station, douze prélèvements représentatifs des principaux habitats (couple

substrat/vitesse du courant, sachant que l'on dispose de 12 substrats notés S et de 4 classes de vitesse notées V) repérés sur la station ont été réalisés à l'aide d'un filet Surber (vide de maille : 500 µm ; surface échantillonnée : 1/20 de m²), au prorata des surfaces de recouvrement relatives des différents habitats. Au préalable, chaque station a été parcourue sur toute sa Ionaueur afin d'évaluer les paramètres morphologiques (au besoin) ainsi que les pourcentages recouvrement différents des substrats (systématiquement).

Les habitats marginaux (surface relative <5% de la surface de la station) et dominants ($\geq 5\%$) ont alors été échantillonnés, ce qui permet d'obtenir une image globale moyenne du peuplement d'invertébrés de la station.

Un premier groupe de 4 prélèvements a été réalisé sur les habitats marginaux suivant l'ordre d'habitabilité des substrats (bocal 1). Un second groupe de 4 prélèvements a été réalisé sur les habitats dominants, suivant l'ordre d'habitabilité des substrats (bocal 2). Un dernier groupe de 4 prélèvements a été réalisé aussi dans les habitats dominants, mais en privilégiant la représentativité des habitats (bocal 3).

Une fois prélevés, les échantillons ont été fixés au formaldéhyde (concentration finale 4%) en vue de la détermination en laboratoire des organismes qui les composent.

RAPPORT FINAL Page 18/216

2.4.2. Stratégie d'échantillonnage

Sur chaque station, le plan d'échantillonnage des différents habitats (couple substrat/vitesse) a été établi en fonction des pourcentages de recouvrement des substrats sur la station.

Au niveau de chaque station, des mesures physico-chimiques de température, de pH, d'oxygène dissous et de conductivité ont été réalisées *in situ* à l'aide d'une sonde multi paramètres Quanta Hydrolab, dans la veine centrale du chenal principal. Des prélèvements d'eau ont aussi été réalisés pour être analysés en laboratoire.

2.4.3. Planning des opérations de terrain

Les investigations de terrain se sont déroulées du **1 mars au 16 mars 2012**. Les dates d'intervention ainsi que les conditions météorologiques et d'hydrologie sur les stations sont présentées dans les tableaux 5 et 6 ci-dessous.

Tableau 5. Dates d'intervention, conditions météorologiques et hydrologie sur les stations du réseau de référence Martinique en 2012.

Nama ababian	C- d- Aik	Code	Echan	tillonnage 2012	(carême)
Nom station	Code Asconit	SANDRE Date		Météorologie	Hydrologie
Trou Diablesse	GRD	8101101	02/03/2012	Couvert	Moyennes Eaux
Habitation Céron	CER	8014101	05/03/2012	Pluie	Moyennes Eaux
Source Pierrot	CAR	8320101	13/03/2012	Couvert	Moyennes Eaux
Trace des Jésuites	LOR	8201101	13/03/2012	Pluie	Moyennes Eaux
Gommier	GAL	8221101	01/03/2012	Pluie	Basses Eaux
Palourde	PAL	8501101	08/03/2012	Couvert	Moyennes Eaux
Tunnel de Didier	CAN	8301101	08/03/2012	Sec et ensoleillé	Basses Eaux
La Broue	VAU	8703101	12/03/2012	Couvert	Basses Eaux
Beauregard	PIL	8811101	06/03/2012	Sec et ensoleillé	Basses Eaux

RAPPORT FINAL Page 19/216

Tableau 6. Dates d'intervention, conditions météorologiques et hydrologie sur les stations de contrôle de surveillance et d'enquête Martinique au carême 2012.

Now station	Codo CANDRE	Echantillonnage 2012 (carême)					
Nom station	Code SANDRE	Date	Météorologie	Hydrologie			
Amont stade Grand'Rivière	08102101	02/03/2012	Couvert	Moyennes Eaux			
St-Pierre (ancien pont)	08329101	16/03/2012	Sec et ensoleillé	Moyennes Eaux			
Pr AEP-Vivé Capot	08115101	07/03/2012	Humide	Moyennes Eaux			
Pont RD24 St-Marie	08213101	02/03/2012	Couvert	Moyennes Eaux			
Fond Baise	08322101	05/03/2012	Sec et ensoleillé	Moyennes Eaux			
Gué de la Désirade	08521101	13/03/2012	Couvert	Moyennes Eaux			
Pont RN1	08521102	14/03/2012	Couvert	Moyennes Eaux			
Pont Belle-Ile	08504101	01/03/2012	Couvert	Moyennes Eaux			
Brasserie Lorraine	08533101	12/03/2012	Couvert	Moyennes Eaux			
Amont confluence Pirogue	08203101	07/03/2012	Humide	Moyennes Eaux			
Grand Galion	08225101	12/03/2012	Couvert	Basses Eaux			
Pont de Chaîne	08423101	08/03/2012	Sec et ensoleillé	Basses Eaux			
Petit Bourg	08803101	14/03/2012	Sec et ensoleillé	Basses Eaux			
Dormante	08824101	06/03/2012	Sec et ensoleillé	Basses Eaux			
Séguineau	08205101	07/03/2012	Sec et ensoleillé	Moyennes Eaux			
Pont de Montgérald	08412102	08/03/2012	Sec et ensoleillé	Moyennes Eaux			
Case Navire (bourg Schoelcher)	08302101	05/03/2012	Sec et ensoleillé	Moyennes Eaux			
Pont de l'Alma	08511101	01/03/2012	Pluie	Moyennes Eaux			
Amont Bourg Gde Rivière Pilote	08813103	06/03/2012	Couvert	Basses Eaux			
Pont Séraphin	08616101	12/03/2012	Couvert	Basses Eaux			
Pont Madeleine	08812101	06/03/2012	Couvert	Basses Eaux			
Palourde	08501101	08/03/2012	Couvert	Moyennes Eaux			

2.5. Etude de l'ichtyofaune et des macrocrustacés

2.5.1. Principe de la méthode

Le poisson constitue le sommet de la chaîne alimentaire dans les cours d'eau et l'appréciation de leurs états de santé peut être grandement améliorée par la caractérisation des peuplements pisciaires.

Conformément à la circulaire 2004/08, les éléments biologiques qui ont été collectés par ASCONIT Consultants permettront de définir :

- La composition du peuplement piscicole,
- L'abondance totale et par espèce,
- La structure en classes de tailles des espèces majoritaires.

RAPPORT FINAL Page 20/216

Conformément aux prescriptions du cahier des charges, le protocole de prélèvement de l'ichtyofaune est issu des préconisations de la **norme NF EN 14011** (échantillonnage des pêches à l'électricité). Le protocole référence est désormais normalisé sous les références : XP T90-383 de Mai 2008. Ce texte reprend le protocole en usage pour les réseaux DCE (présenté lors de nos propositions 2007 et 2008).

L'objectif est d'estimer par pêche électrique, sur une aire déterminée, la composition et l'abondance (relative ou absolue) des espèces, et la structure de la population de poissons.

La technique de capture des **macrocrustacés**, populations très présentes en Martinique, étant efficace par pêche électrique, ceux-ci sont donc inventoriés en même temps que les poissons.

2.5.2. Stratégie d'échantillonnage

Dans le cadre des pêches réalisées pour les réseaux de surveillance DCE, l'Office National de l'Eau et de Milieux Aquatiques a mis en place un **protocole standardisé et cohérent avec les normes CEN** en matières d'échantillonnage des peuplements piscicoles en cours d'eau.

Deux types de méthodes d'échantillonnage peuvent être utilisés selon la taille de la rivière :

- Rivière large (> 8 m de large ou moins mais pas entièrement prospectable à pied) : échantillonnage par des unités ponctuelles d'échantillonnage (EPA) de deux types, les premières réparties régulièrement sur la station de manière à représenter la diversité des habitats, les secondes réparties sur les habitats attractifs de la station.

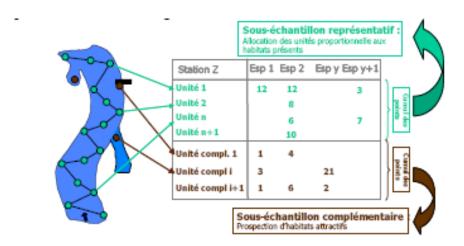


Figure 1 : Principes retenus pour la méthode d'échantillonnage des grands milieux.

Le sous-échantillon « complémentaire » n'est mis en œuvre par le responsable de la pêche que lorsqu'il estime qu'il est possible de capturer de nouvelles espèces, non représentée dans l'échantillon « représentatif ».

Les unités d'échantillonnage sont au nombre de 75 (sur une longueur= 20 x largeur moyenne). L'unité d'échantillonnage est une unité ponctuelle correspondant approximativement à un déplacement de l'anode sur un cercle d'environ 1 m de diamètre autour du point d'impact (sans déplacement de l'opérateur). Dans cette configuration, la surface échantillonnée est évaluée à environ 12,5m². Un temps de pêche compris entre 15 et 30 secondes sur chaque point est retenu comme valeur guide, sachant que l'épuisement du stock au niveau du point n'est pas recherché de manière systématique.

RAPPORT FINAL Page 21/216

DEAL de la Martinique Suivi DCE Martinique (972) Année 2012

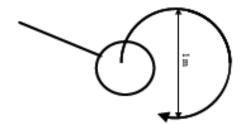


Figure 2 : Principe de mise en œuvre de l'unité d'échantillonnage ; déplacement de l'anode autour du point d'impact.

Sur le terrain, chaque unité d'échantillonnage fait l'objet d'une description sommaire concernant : le faciès, la position par rapport à la berge, la capture ou non de poissons. Lors de la phase de saisie, seules les informations synthétiques suivantes sont intégrées : nombre d'unité d'échantillonnage dans chaque type de faciès, nombre d'unités d'échantillonnage en berge et dans le chenal, nombre d'unités d'échantillonnage sans capture de poissons.

- Petit cours d'eau : échantillonnage complet ; longueur prospectée : égale au moins à 20 fois la largeur. Utilisation de deux anodes pour un cours d'eau >4m de large.

Dans le cas particulier des cours d'eau de la Martinique, qui présentent une forte densité d'individus rendant difficile un échantillonnage complet, une adaptation de la méthode ONEMA pour les rivières larges est proposée :

- Utilisation de la méthode par unités d'échantillonnages pour tous les cours d'eau (inclus les cours d'eau inférieurs à 8 m de large)
- Réduction de la longueur de la station de pêche (< 20 fois la largeur du cours d'eau) vu la succession rapprochée des séguences d'écoulement lent/rapide.
- Réduction de la surface des unités d'échantillonnages (déplacement de moins d'un mètre ou aucun déplacement) vu la densité en espèces des cours d'eau de l'île.

La prospection s'effectue à l'aide d'un appareil de pêche électrique. Les animaux capturés sont identifiés à l'espèce (réf. Les atlas des poissons d'eau douce de Martinique, Keith), mesurés (mm) puis remis à l'eau. Si le nombre d'individus d'une espèce est très important, il sera procédé à des mesures sur un sous-échantillon représentatif d'au moins 50 individus qui respectera la structure de taille globale de la population. Le sous-échantillon sera prélevé sur un lot dont l'ensemble des individus sera comptabilisé et le poids total évalué.

Une campagne annuelle en période de carême a été réalisée sur l'ensemble des stations concernées. Celle-ci a eu lieu **du 19 au 31 mai 2010**.

2.5.3. Interprétation des résultats

L'évaluation de la qualité de l'eau par rapport à la faune piscicole ne se fait pas par le calcul de l'IPR comme c'est le cas en France métropolitaine. Le manque de données physico-chimiques en lien avec les inventaires ne permet pas d'établir de relation entre les espèces et la qualité de l'eau. De plus les investigations menées dans le cadre de l'Etat des lieux piscicole des rivières de la Martinique ont mis en évidence la relative homogénéité des peuplements piscicoles.

Les métriques requises par la DCE pour la définition des classes de qualité sont pour les poissons : la composition taxonomique, l'abondance, la tolérance des espèces, la structure en classe de taille/âge des populations.

RAPPORT FINAL Page 22/216

2.5.4. Eléments physico-chimiques dans le biote

Conformément à la réglementation en vigueur (arrêté du 25/01/2010), des analyses chimiques sur la matière vivante sont également réalisées dans le but de suivre l'état de contamination par certaines molécules dans cette matrice. Des échantillons de différentes espèces sont collectés afin de constituer des lots d'une masse suffisante (minimum 50 g) pour permettre le dosage de la chlordécone. Il s'agit principalement des *Sicydium sp.* pour les poissons (puis *Eleotris perniger* et *Anguilla rostrata*) et des *Macrobrachium spp* (le plus souvent M. heterochirus mais également M. crenulatum, M. acanthurus et M. faustinum) pour les crustacés. Ces lots sont composés d'au moins 3 individus, tous de taille homogène, conditionnés dans des sachets en plastique. Les échantillons sont ensuite congelés puis envoyés au LDA 26 dans des glacières de carboglace. Les résultats sont exprimés en µg/kg de poids frais.

RAPPORT FINAL Page 23/216

3. Résultats

3.1. Caractérisation physicochimique

3.1.1. Paramètres physico-chimiques in situ

Réseau de référence :

Les valeurs moyennes calculées cette année pour les différents paramètres ne diffèrent pas significativement de celles de la campagne de carême 2011.

Les cinq paramètres physico-chimiques mesurés *in situ* sont relativement stables sur les stations du réseau de référence. Le pH moyen en 2012 est le même qu'en 2011 (respectivement 8,06 et 8,08). Tout comme en 2011, la température des eaux est relativement fraîche (22.7°C en moyenne, contre 25.6°C en 2010). Concernant la conductivité, les valeurs enregistrées sont là aussi comparables à celles de 2011. La station Beauregard enregistre la plus grosse variation (1376 μ S/cm en 2012, contre 1560 μ S/cm en 2011). Aussi, l'oxygénation moyenne de l'eau en 2012 est comparable aux valeurs de 2011 (8,03 mg/l contre 8,23 mg/l, respectivement). La différence est notable sur la station La Broue, qui présente un taux d'oxygénation de 7,21 mg/l en 2012 contre 8,73 mg/l en 2011.

Comme observé depuis 2009, les rivières du sud (Vauclin et Pilote) se distinguent naturellement par des températures et conductivités élevées. La localisation de ces deux stations dans une zone biogéographique autre (« zone sud »), avec entre autres les faibles débits et la forte urbanisation qui y sont associés, expliquent ces résultats persistants d'années en années. Des facteurs naturels entrent aussi en compte, notamment le fond géochimique des eaux de surface dans la zone biogéographique sud générant des eaux chargées principalement en calcium, magnésium, sodium et chlorures (éléments issus des roches hyaloclastites de la chaine Montagne du Vauclin-Morne Pitault).

A l'inverse, les valeurs de conductivité les plus basses sont toujours mesurées sur les stations Gommier et Palourde. En ce qui concerne l'oxygénation de l'eau, les deux stations du sud présentent les plus faibles taux d'oxygénation. Bien qu'en augmentation depuis 2010, celle-ci est seulement de 6,24 mg 0_2 /l sur la station Beauregard, contre des valeurs allant de 7,21 à 9,17 mg 0_2 /l pour les autres stations. La faible oxygénation de l'eau à cette station avait déjà été mise en avant lors des précédents relevés.

RAPPORT FINAL Page 24/216

Tableau 7. Paramètres physico-chimiques in situ mesurés sur les stations du réseau de référence 2012 de Martinique.

0	0.1.0.1.	Température	рН	Conductivité	Охуд	énation
Station	Code Sandre	°C	UpH	μS/cm	mg/l	%
Trou Diablesse	8101101	22.0	8.10	102	9.05	103.7
Trace des Jésuites	8014101	21.8	8.08	115	7.42	85.8
Tunnel Didier	8320101	22.5	7.95	143	8.51	100.3
Source Pierrot	8201101	22.8	8.31	121	8.48	100.3
Habitation Céron	8221101	22.4	8.13	145	9.17	103.9
Palourde Lézarde	8501101	21.6	7.90	69	8.49	98.6
Gommier	8301101	21.8	7.98	59	8.06	95.0
La Broue	8703101	24.9	7.95	765	7.21	86.8
Beauregard	8101101	24.5	8.14	1376	6.24	75.0
	Moyenne	22.7	8.06	321.7	8.07	94.4
	Min	21.6	7.90	59.0	6.24	75.0
	Max	24.9	8.31	1376.0	9.17	103.9
	ET	1.20	0.13	452.13	0.95	9.83

Réseau de contrôle opérationnel, de surveillance et d'enquête :

Contrairement aux valeurs de pH qui présentent de faibles écarts entre les stations du réseau, les valeurs de conductivité présentent une grande variabilité entre les stations. La station Palourde (qui fait aussi partie du réseau de référence) se démarque par sa conductivité extrêmement faible (69 μ S/cm). A l'inverse, les stations situées dans la partie sud de l'île présentent une conductivité naturellement élevée (>400 μ S/cm), du fait de la lithologie, (entre autres, hyaloclastites et andésites associées à la chaine Pitault-Vauclin). La forte urbanisation du sud de l'île associée à une agriculture présente peuvent également accentuer la minéralisation des eaux. Les stations concernées sont les stations Dormante, Amont Bourg Rivière Pilote, Pont Madeleine, Brasserie Lorraine, Petit Bourg et Pont de Chaines. La station Pont Séraphin située sur la rivière Deux Courants étant soumise à l'influence des marées, elle présente elle aussi une conductivité élevée (610 μ S/cm).

Concernant l'oxygénation de l'eau, les stations Dormante et Pont Madeleine présentent les plus faibles valeurs, soit 6,18 et 6,6 mg O_2 /l respectivement (pour 73,5 et 79,5 de pourcentage de saturation). A l'inverse, la station Fond baise présente le plus fort taux d'oxygénation, avec 9,31 mg O_2 /l (soit 111,8 en % de saturation).

Tableau 8. Paramètres physico-chimiques *in situ* mesurés sur les stations du réseau de surveillance, de contrôle opérationnel et d'enquête 2012 de Martinique

RAPPORT FINAL Page 25/216

Nom station	Code	т°	рН	Conductivité	Oxygé	nation
Non Station	SANDRE	T°C	U pH	μs/cm	mg/l	%
Amont stade Grand'Rivière	08102101	21.8	8.10	100	9.06	103.3
St-Pierre (ancien pont)	08329101	24.3	8.25	218	8.26	98.6
Pr AEP-Vivé Capot	08115101	23.1	8.34	143	8.83	103.5
Pont RD24 St-Marie	08213101	24.3	8.09	154	8.20	98.8
Fond Baise	08322101	24.9	8.33	148	9.31	111.8
Gué de la Désirade	08521101	24.7	8.14	131	8.35	100.4
Pont RN1	08521102	24.6	7.82	115	7.10	85.4
Pont Belle-Ile	08504101	24.0	7.77	174	7.45	88.8
Brasserie Lorraine	08533101	26.6	8.11	330	8.44	105.1
Amont confluence Pirogue	08203101	22.8	8.06	103	8.32	97.0
Grand Galion	08225101	24.9	7.92	173	7.80	94.0
Pont de Chaîne	08423101	26.1	7.97	371	8.21	101.7
Petit Bourg	08803101	27.1	8.14	368	8.84	110.0
Dormante	08824101	23.5	7.88	482	6.18	73.5
Séguineau	08205101	26.2	8.17	109	8.00	98.8
Pont de Montgérald	08412102	25.8	7.84	226	8.32	102.3
Case Navire (bourg Schoelcher)	08302101	27.7	7.96	212	7.99	101.1
Amont Bourg Gde Rivière Pilote	08813103	26.9	8.08	630	6.7	83.5
Pont de l'Alma	08511101	20.6	8.07	94	8.82	102.5
Pont Séraphin	08616101	24.8	8.18	610	8.26	99.1
Pont Madeleine	08812101	24.7	8.03	405	6.6	79.5
Palourde	08501101	21.6	7.90	69	8.49	98.6
	Moyenne	24.6	8.1	243.9	8.1	97.2
	Minimum	20.6	7.8	69.0	6.2	73.5
	Maximum	27.7	8.3	630.0	9.3	111.8
	Ecart type	1.8	0.2	166.9	0.8	9.5

RAPPORT FINAL Page 26/216

3.1.2. Eléments physico-chimiques généraux sur les sites de référence

L'arrêté du 25/01/2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface a pour but d'établir l'état chimique des stations à partir du **percentile 90%** des données acquises sur l'ensemble de la période des deux dernières années. Dans le cas de la référence pour la Martinique, seules deux campagnes ont été réalisées par année ce qui conduit à prendre en compte l'ensemble des données depuis le début du suivi (2005). Le percentile 90 est calculé selon la formule du SEQ-EAU V1, soit : R90 = 0,9*N+0,5, avec N : nombre de données. Le résultat est arrondi à l'entier supérieur.

Les paramètres physico-chimiques soutenant la biologie ne peuvent servir de base au rejet d'une station de référence si la biologie est satisfaisante. Par contre, ils peuvent expliquer des mauvais indices biologiques qui mettraient de côté une station pressentie comme référence.

Cette évaluation de la qualité selon des critères DCE plutôt que selon le SEQ eau est possible seulement pour certains paramètres, présentés à l'annexe 4 du guide technique et au tableau 6 de la circulaire 2005/12. Des limites supérieures et inférieures de bon état sont données et doivent être appliquées sur les résultats du percentile 90%. Les résultats pour la campagne 2012 sont présentés dans les tableaux 9 et 10 :

Le paramètre **température** (renseigné ici dans les eaux cyprinicoles), devrait faire l'objet « **d'une non prise en compte** » à deux titres :

- Absence de classification des eaux en fonction du peuplement piscicole observé (salmonicoles/cyprinicoles),
- Les cours d'eau de Martinique entrent dans les cas particuliers du guide technique :
 « cours d'eau de température naturellement élevée » (températures naturellement
 comprises entre 24,4°C et 28,4°C dans la partie nord et entre 25,7°C et 26,9°C dans
 la partie sud) en 2012.

Dans la même logique, vis-à-vis du **pH**, il semble risqué de conclure au déclassement sans connaître de manière plus précise la chimie locale de l'eau. Les deux stations se distinguant pour ce paramètre étant La station Gommier sur la rivière Galion et la station Palourde sur la rivière Lézarde avec toutes deux un pH bas de 5,8 unités.

En regard des autres paramètres, toutes les stations sont en « bon » état, à l'exception des stations :

- Source Pierrot déclassée par la DCO qui était déjà une cause de déclassement en 2011,
- Tunnel Didier déclassée par les paramètres :
 - Orthophosphates (0,6 mg/l),
 - Matières en suspension (76 mg/l),
 - Aluminium dissout (258 mg/l),
- Pont RD5 la Broue déclassée par les paramètres :
 - Matières en suspension (142 mg/l),
 - Turbidité (59 NTU),
 - Delta O2 (3,14 mg/l),
 - Aluminium (900 mg/l),
- **Beauregard** déclassée par la DCO.

RAPPORT FINAL Page 27/216

Les valeurs de conductivité et de chlorures sont en outre élevées sur les stations Pont RD5 la Broue et Tunnel Didier, respectivement 1530 μ S/cm et 264 mg/l pour Pont RD5 la Broue et 824 μ S/cm et 105,6 mg/l pour Tunnel Didier. **Selon le BRGM¹**, **le fond géochimique élevé en chlorures influence, selon un niveau de confiance élevé (jeu de données fiable), les eaux de surface de l'ensemble de l'île.** Les valeurs fortes retrouvées peuvent donc, selon ce rapport, être considérées comme normales et non issues d'une influence anthropique. Le déclassement des stations n'est donc pas pris en compte.

¹ Lions, J., Allier, D., Pinson, S.Vittecoq, B. 2008. Identification des zones à risques de fond géochimique élevé dans les cours d'eau et les eaux souterraines de la Martinique. Rapport BRGM RP-56748-FR.

RAPPORT FINAL Page 28/216

Tableau 9. Paramètres physico-chimiques généraux (percentile 90%) des stations sur la période 2005-2012 et état associé selon l'annexe 4 du Guide technique de mars 2009.

PARAMETRES	Limites supérieure et inférieure du bon état	Trou Diablesse	Amont Habitation Céron	Source Pierrot	Trace des Jésuites	Gommier	Palourde	Tunnel Didier	Pont RD5 La Broue	Beauregard
Bilan de l'oxygène	10 61	0.05	0.05	0.00	0.05	0.45	0.40	0.70	7.40	0.50
Oxygène dissous (mgO ₂ /l)]8 – 6]	9,05	9,05	8,89	8,35	8,15	8,48	8,70	7,40	8,59
Taux de saturation en O₂ dissous (%)]90 – 70]	108,0	103,6	104,0	98,6	100,6	101,0	111,1	90,4	109,9
DBO5 (mg O_2/I)]3 – 6]	3,8	3,8	3,8	3,9	3,9	3,8	3,0	3,1	3,9
Carbone organique (mg C/l)]5 – 7]	1,4	2,5	1,3	0,6	1,1	1,3	4,0	5,6	1,0
Température										
Eaux salmonicoles]20 – 21,5]						_			
Eaux cyprinicoles ¹]24 – 25,5]	24,5	24,9	24,9	24,4	24,6	25,2	28,4	26,9	25,7
Nutriments										
PO_4^{3-} (mg PO_4^{3-} /I)]0,1 – 0,5]	0,09	0,09	0,09	0,07	0,09	0,10	0,60	0,34	0,07
Phosphore total (mg P/I)]0,05 – 0,2]	0,05	0,05	0,06	0,03	0,05	0,05	0,16	0,13	0,04
$NH_4^+ (mg NH_4^+/I)$]0,1 – 0,5]	0,09	0,09	0,09	0,05	0,09	0,09	0,09	0,09	0,05
NO_2 (mg NO_2 /l)]0,1 - 0,3]	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
NO_3 (mg NO_3 /l)]10 – 50]	0,99	0,99	0,99	0,99	0,99	0,99	1,81	2,12	0,99
Acidification										
pH minimum]6,5 – 6]	6,9	7,0	7,2	7,4	5,8	5,8	7,6	7,4	7,4
pH maximal]8,2 – 9]	8,3	8,3	8,4	8,1	8,0	8,0	8,3	8,1	8,0
Salinité										
Conductivité ²		132,0	160,0	142,0	142,2	62,9	75,6	823,4	1530,0	211,0
Chlorures ²	A préciser par groupes de types	10,7	13,2	8,8	10,6	9,5	8,7	105,6	264,0	13,6
Sulfates ²		4,9	4,8	9,7	38,1	2,5	4,8	18,5	24,2	3,3

¹ cas des cours d'eau de température naturellement élevée

Bleu: bon état Gris: on ne se prononce pas Rouge: mauvais état

RAPPORT FINAL Page 29/216

² pas de valeurs limite établies, à ce stade de connaissances

Tableau 10. Paramètres physico-chimiques généraux (percentile 90%) des stations sur la période 2005-2012 et état associé selon l'annexe 4 du Guide technique de mars 2009.

PARAMETRES	Limites supérieure et inférieure du bon état	Trou Diablesse	Amont Habitation Céron	Source Pierrot	Trace des Jésuites	Gommier	Palourde	Tunnel Didier	Pont RD5 La Broue	Beauregard
Bilan de l'oxygène										
DCO (mg/I O ₂)]20 – 30]	29,9	29,9	76,0	29,9	29,9	29,9	27,1	28,2	56,5
NKJ (mg/l N)]1 – 2]	1,0	1,0	1,0	0,9	1,0	0,9	1,0	1,0	1,0
Particules en suspension										
MES (mg/l)]25 – 50]	23,2	33,0	27,1	11,2	9,0	9,8	76,1	142,4	25,0
Turbidité (NTU)]15 – 35]	3,1	5,7	14,0	2,4	2,6	1,6	31,6	59,6	3,8
Effets des proliférations végétales										
Chlorophylle a + phéopigments (µg/l)]10 – 60]	3,1	5,7	14,0	2,4	2,6	1,6	31,6	59,6	3,8
Taux de saturation en O_2 dissous (%)]110 –130]	108,0	103,6	104,0	98,6	100,6	101,0	111,1	90,4	109,9
pH (unité pH)]8 – 8,5]	8,2	8,2	8,3	8,0	7,9	7,9	8,2	8,1	7,8
DO2 (mini-maxi) (mg/l O_2)]1 – 3]	1,38	1,72	1,54	1,02	2,01	2,02	2,63	3,14	2,01
Acidification		,	,	,	,	,	,	,	,	,
Aluminium (dissous) (mg/l) pH < 6,5]5 – 10]									
Aluminium (dissous) (mg/l) pH > 6,5]100 – 200]	105,6	111,1	99,2	109,2	100,0	100,1	258,8	900,0	93,8

Bleu : bon état Gris : on ne se prononce pas Rouge : mauvais état

Rapport final Page 30/216

DEAL de la Martinique Suivi DCE Martinique (972) Année 2012

Les résultats obtenus par campagne pour les différents paramètres sont évalués selon les classes de qualités du <u>SEQ-Eau version 2</u> afin de définir l'ampleur des perturbations potentielles (en 5 classes au lieu des 3 classes Très bon / bon / moyen définies dans la DCE pour la physico-chimie générale). De plus, étant donné que tous les paramètres ne possèdent pas de limites de classes définies par la DCE, la moyenne des paramètres sur l'ensemble des campagnes est présentée avec une classification SEQ-Eau version 2. Les classes de qualité illustrées dans les tableaux 11 et 12 sont figurées comme suit :

Classe de qua	Classe de qualité SEQ-Eau v2 (par altération)								
	Très Bonne								
	Bonne								
	Moyenne								
	Mauvaise								
	Très Mauvaise								

Les paramètres sont présentés par altération dans les tableaux suivants. L'altération « Micropolluants » n'existant pas dans le SEQ-Eau, aucune classe de qualité (sauf l'Aluminium) n'est associée aux paramètres de ce groupement.

D'une manière générale, les résultats de 2012 n'ont pas modifié de manière significative la moyenne (Tableaux 11 et 12). Les stations qui ressortent du lot par leurs résultats sont les mêmes que celles de 2011.

En ce qui concerne le **bilan oxygène**, seule la station Pont RD5 la Broue présente une qualité moyenne vis-à-vis du bilan en oxygène à cause des paramètres oxygène dissous et saturation en dioxygène. Les stations Beauregard, Tunnel Didier, Gommier et Trace des Jésuites sont en qualité bonne vis-à-vis de l'oxygène dissous.

Le bilan des **matières organiques oxydables** place la station Source Pierrot en classe moyenne du fait d'une DCO élevée. L'ensemble des autres stations conservent une qualité très bonne pour ce paramètre à l'exception de la station Beauregard qui reste en classe bonne. L'azote Kjeldhal n'est déclassant pour aucune des stations, ces dernières possèdent toutes une classe de qualité très bonne pour ce paramètre.

Du point de vue des **nutriments azotés**, les stations sont toutes en très bonne qualité pour les nitrites et l'ammonium. Les nitrates placent l'ensemble des stations en qualité bonne à l'exception des stations Traces des jésuites et Beauregard qui conservent une très bonne qualité pour ce paramètre. Pour le **phosphore**, toutes les stations sont classées en très bonne qualité sauf Pont RD5 la Broue et Tunnel Didier qui se retrouvent déclassées en bonne qualité vis-à-vis des orthophosphates et du phosphore total.

Les **particules en suspension** placent la station Pont RD5 la Broue en très mauvaise qualité. Ce paramètre est toutefois très subjectif car fortement dépendant de la pluviométrie au moment des prélèvements. Les stations de la zone sud ont tendance à être plus turbides, ce qui doit en partie s'expliquer par des écoulements plus lentiques facilitant l'accumulation des fines.

La **minéralisation** des eaux est forte pour les stations Tunnel Didier et Pont RD5 la Broue, comme en témoignent les conductivités élevées mesurées. La concentration en chlorures des eaux de la station Pont RD5 la Broue la déclasse en très mauvaise qualité, mais comme évoqué précédemment, ce paramètre est présent naturellement en forte concentration dans le milieu. L'ensemble des autres stations présentent, en revanche, des concentrations en calcium, une conductivité et un titre alcalimétrique complet élevés. Elles semblent toutefois moins impactées que la station Pont RD5 la Broue par le fond géochimique riche en chlorures.

Les micropolluants, mis à part l'aluminium, ne font pas partis du SEQ-Eau donc ne permettent pas de donner une évaluation de qualité. De même, la circulaire 2005/12 ne leur attribue pas de limite de qualité. La station RD5 la Broue se distingue par une forte

RAPPORT FINAL Page

DEAL de la Martinique (972)

concentration en aluminium dissous. Les valeurs de concentration en fer, bore et manganèse sont élevées sur les stations Tunnel Didier et RD5 la Broue (respectivement 303,3, 45,8 et 34,6 μ g/l pour Tunnel Didier et 586, 49 et 88,1 μ g/l pour RD5 la Broue). La station Trou Diablesse présente la plus forte concentration en bore (65,7 μ g/l).

RAPPORT FINAL Page 33/216

Tableau 11. Paramètres physico-chimiques généraux mesurés sur les stations de référence au cours de la période 2005-2012 et état associé selon la version 2 du SEQ Eau.

PARAMETRES	Trou Diablesse	Amont Habitation Céron	Source Pierrot	Trace des Jésuites	Gommier	Palourde	Tunnel Didier	Pont RD5 La Broue	Beauregard
Bilan de l'oxygène									
Oxygène dissous (mgO ₂ /l)	8,6	8,1	8,2	7,9	7,8	8,0	7,6	5,6	7,9
Taux de saturation en O ₂ dissous (%)	100,1	95,9	98,3	92,5	95,3	96,8	94,8	69,4	98,7
DBO5 (mg O_2/I)	2,0	2,1	2,1	1,5	2,3	2,1	1,8	2,1	1,5
Carbone organique (mg C/I)	1,0	1,8	1,2	0,5	0,7	0,7	3,1	4,1	0,9
Température									
Eaux salmonicoles									
Eaux cyprinicoles ¹	23,5	23,9	23,9	23,4	23,7	23,7	27,0	25,7	24,1
Nutriments									
PO ₄ ³⁻ (mg PO ₄ ³⁻ /l)	0,08	0,08	0,07	0,04	0,07	0,07	0,32	0,16	0,05
Phosphore total (mg P/I)	0,04	0,04	0,04	0,02	0,03	0,03	0,12	0,09	0,02
NH ₄ + (mg NH ₄ + /I)	0,06	0,06	0,06	0,04	0,07	0,06	0,07	0,06	0,04
NO_2 (mg NO_2 /I)	0,03	0,03	0,03	0,02	0,03	0,03	0,03	0,03	0,02
NO_3^- (mg NO_3^- /I)	0,65	0,60	0,45	0,57	0,70	0,48	1,05	1,15	0,63
Acidification									
pH minimum									
pH maximal	7,8	7,8	7,9	7,8	7,1	7,2	7,9	7,8	7,7
Minéralisation									
Conductivité ²	110,7	137,8	125,5	126,3	54,5	64,1	682,1	1053,0	149,1
Chlorures ²	9,7	12,0	8,3	8,3	8,8	8,3	84,7	220,9	11,0
Sulfates ²	3,3	3,3	8,6	26,3	2,4	3,5	13,5	19,1	2,8
Calcium	8,6	12,1	11,2	10,5	2,5	4,4	45,0	87,2	7,4
Magnésium	2,6	3,2	3,1	2,9	1,9	1,7	19,1	36,2	2,7
Sodium	9,7	11,2	8,7	6,8	6,3	6,4	56,7	108,1	9,1
TAC	3,5	4,4	3,7	1,8	1,4	1,8	13,6	23,5	3,4

¹ cas des cours d'eau de température naturellement élevée

² pas de valeurs limites établies, à ce stade de connaissances

RAPPORT FINAL Page 34/216

Tableau 12. Paramètres physico-chimiques généraux mesurés sur les stations de référence au cours de la période 2005-2012 et état associé selon la version 2 du SEQ Eau.

PARAMETRES	Trou Diablesse	Amont Habitation Céron	Source Pierrot	Trace des Jésuites	Gommier	Palourde	Tunnel Didier	Pont RD5 La Broue	Beauregard
Bilan de l'oxygène									
DCO (mg/I O ₂)	16,3	15,3	30,3	15,2	15,0	17,2	14,5	17,6	27,3
NKJ (mg/l N)	0,8	0,8	0,9	0,7	0,8	0,8	0,9	0,9	0,8
Particules en suspension									
MES (mg/l)	7,5	11,8	10,3	5,8	4,9	4,7	24,7	66,1	11,2
Turbidité (NTU)	1,2	2,3	4,2	1,3	1,4	0,9	14,6	28,1	2,2
Effets des proliférations végétales									
Chlorophylle a + phéopigments (μg/l)	1	6	1	1	0	1	4	9	0
Taux de saturation en O₂ dissous (%)	100,1	95,9	98,3	92,5	95,3	96,8	94,8	69,4	98,7
pH (unité pH)	7,8	7,8	7,9	7,8	7,1	7,2	7,9	7,8	7,7
DO2 (mini-maxi) (mg/l O_2)	1,38	1,72	1,54	1,02	2,01	2,02	2,63	3,14	2,01
Acidification									
Aluminium (dissous) (mg/l) pH < 6,5									
Aluminium (dissous) (mg/l) pH > 6,5	57,7	76,6	52,4	82,0	62,2	57,0	119,9	297,2	73,2
Micropolluants									
Arsenic	3,7	3,7	3,7	2,5	3,7	3,7	4,2	4,2	2,5
Bore	65,7	16,6	13,3	11,0	16,2	17,3	45,8	49,0	10,8
Cyanures totaux	12,0	12,0	11,2	8,9	12,4	12,0	15,8	18,5	8,9
Fer total	20,0	24,9	71,0	34,8	72,5	34,7	303,3	586,0	38,8
Manganèse total	16,0	24,9	23,1	11,1	18,6	21,5	34,6	88,1	12,5

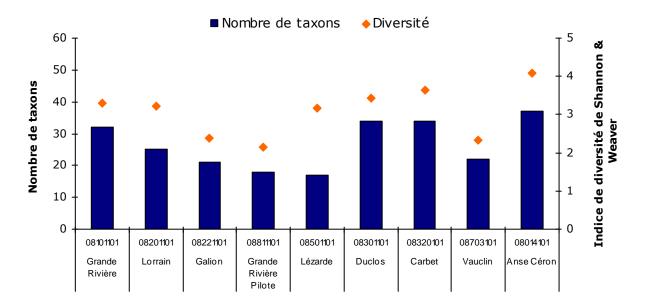
RAPPORT FINAL Page 35/216

3.2. Analyse floristique des diatomées

3.2.1. Diversité et richesse taxonomique

Les inventaires diatomiques, exprimés en ‰, sont fournis en annexe 3.

La diversité d'une biocénose peut s'exprimer simplement par le nombre d'espèces présentes. Mais ce nombre n'est pas souvent connu avec exactitude. Plusieurs indices de diversité ont été proposés, permettant de comparer entre eux des peuplements. Nous avons calculé l'indice de Shannon et Weaver (1949). Un indice de diversité élevé correspond à des conditions de milieu favorables (en particulier stabilité) permettant l'installation d'un peuplement équilibré, plutôt riche en espèces, mais où aucune espèce ne domine fortement les autres.


Tableau 13 : Richesse spécifique et indice de diversité des peuplements – campagne 2012 – Stations de Référence

Cours d'eau	Localisation	Code SANDRE	Date de prélèvement	Effectif	Nombre de taxons	Diversité	Equitabilité
Grande Rivière	Trou Diablesse	08101101	13/03/2012	412	32	3,30	0,66
Lorrain	Trace des Jésuites	08201101	19/03/2012	402	25	3,21	0,69
Galion	Gommier	08221101	15/03/2012	409	21	2,38	0,54
Grande Rivière Pilote	Beauregard	08811101	15/03/2012	429	18	2,15	0,52
Lézarde	Palourde Lézarde	08501101	15/03/2012	411	17	3,16	0,77
Duclos	Tunnel Didier	08301101	19/03/2012	416	34	3,43	0,67
Carbet	Source Pierrot	08320101	14/03/2012	421	34	3,63	0,71
Vauclin	Pont D5 - La Broue	08703101	13/03/2012	426	22	2,34	0,52
Anse Céron	Amont prise canal Habitation Céron	08014101	14/03/2012	411	37	4,08	0,78
		•		Moyenne	27	3,08	0,65
				minimum	17	2,15	0,52
				maximum	37	4,08	0,78

La figure 3, ci-après représente les valeurs de richesse taxonomique (nombre de taxa) et de diversité (indice de Shannon & Weaver), elles même consignées dans le tableau 13.

Rapport Final Page 36/216

Figure 3. Richesse et diversité spécifique des peuplements - campagne 2012 – Stations de Référence.

Le nombre de taxons du réseau de référence est très variable d'une station à l'autre. Il est compris entre 17 pour la Rivière Lézarde à Palourde Lézarde et 37 sur la Rivière Anse Céron en amont de la prise d'eau du canal de l'Habitation Céron. La richesse spécifique moyenne est de 27 taxons sur le réseau de référence 2012.

Les valeurs de diversité (indice de Shannon & Weaver), se révèlent également très variables. L'équitabilité a également été calculée. Contrairement à l'indice de Shannon & Weaver, elle permet de s'affranchir des variations du nombre de taxons et de mieux appréhender l'équilibre entre les espèces au sein du peuplement. La diversité spécifique varie de 2,15 (Equitabilité = 0,52) dans la Grande Rivière Pilote à Beauregard, à 4,08 (Equitabilité = 0,78) dans la Rivière Anse Céron en amont de la prise d'eau du canal de l'Habitation Céron.

Rapport Final Page 37/216

Tableau 14 : Richesse spécifique et indice de diversité des peuplements – campagne 2012 – Stations de surveillance

Cours d'eau	Localisation	Code SANDRE	Date de prélèvement	Effectif	Nombre de taxons	Diversité	Equitabilité
Grande Rivière	Stade de Grand Rivière	08102101	13/03/2012	401	29	3,07	0,63
Capot	Pr AEP-Vivé-Capot	08115101	13/03/2012	422	37	3,32	0,64
Lorrain	Amont confluent Pirogue	08203101	13/03/2012	436	36	4,14	0,80
Lorrain	Séguineau	08205101	13/03/2012	417	42	3,88	0,72
Bezaudin	Pont RD24 Sainte-Marie	08213101	13/03/2012	409	19	2,44	0,57
Galion	Grand Galion	08225101	13/03/2012	402	30	3,76	0,77
Deux courants	Pont Séraphin	08616101	13/03/2012	407	46	4,08	0,74
Grande Rivière Pilote	Amont Bourg Grande Rivière Pilote	08813103	15/03/2012	408	26	2,95	0,63
Petite Rivière Pilote	Pont Madeleine	08812101	15/03/2012	429	23	1,82	0,40
Oman	Dormante	08824101	15/03/2012	403	24	2,65	0,58
Rivières des Coulisses	Petit Bourg	08803101	15/03/2012	407	44	4,53	0,83
Lézarde	PONT RN1	08521102	15/03/2012	419	33	4,01	0,79
Lézarde	Gué de la Désirade	08521101	15/03/2012	443	34	3,89	0,76
Lézarde	Pont Belle-Île	08504101	15/03/2012	424	26	3,27	0,70
Blanche	Pont de l'Alma	08511101	14/03/2012	415	21	2,64	0,60
Monsieur	Pont de Montgérald	08412102	14/03/2012	423	43	4,41	0,81
Madame	Pont de Chaînes	08423101	14/03/2012	428	33	3,54	0,70
Case Navire	Case Navire (bourg Schœlcher)	08302101	14/03/2012	457	39	4,33	0,82
Carbet	Fond Baise	08322101	14/03/2012	413	37	4,08	0,78
Roxelane	Saint Pierre (ancien pont)	08329101	14/03/2012	464	27	2,62	0,55
Petite Rivière	Brasserie Lorraine	08533101	15/03/2012	438	31	3,63	0,73
				Moyenne	32	3,48	0,69
				minimum	19	1,82	0,4
				maximum	46	4,53	0,83

La figure 4 ci-après représente les valeurs de richesse taxonomique (nombre de taxa) et de diversité (indice de Shannon & Weaver), elles même consignées dans le tableau 14 ci-avant.

Rapport Final Page 38/216

Figure 4. Richesse et diversité spécifique des peuplements - campagne 2012 – Stations de surveillance.

Le nombre de taxons du réseau de surveillance est très variable d'une station à l'autre. Il est compris entre 19 pour la Rivière Bezaudin à Sainte Marie et 46 sur la Rivière Deux Courants au Pont Seraphin. La richesse spécifique moyenne est de 32 taxons sur le réseau de surveillance 2012.

Les valeurs de diversité (indice de Shannon & Weaver), se révèlent également très variables. L'équitabilité a également été calculée. Contrairement à l'indice de Shannon & Weaver, elle permet de s'affranchir des variations du nombre de taxons et de mieux appréhender l'équilibre entre les espèces au sein du peuplement. La diversité spécifique varie de 1,82 (Equitabilité = 0,40) dans la Petite Rivière Pilote au Pont Madeleine, à 4,53 (Equitabilité = 0,83) dans la Rivière des Coulisses à Petit Bourg.

3.2.2. Indices diatomiques (IPS-IBD)

Les notes obtenues avec l'Indice de Polluosensibilité Spécifique (IPS) et l'Indice Biologique Diatomées (IBD) sont consignées dans les tableau 15 et 16 ci-dessous.

Tableau 15 : Indices diatomiques (IPS et IBD) et classes de qualité – campagne 2012 – Stations de Référence

Cours d'eau	Localisation	Code SANDRE	Date de prélèvement	IPS	IBD
Grande Rivière	Trou Diablesse	08101101	13/03/2012	18,6	19,6
Lorrain	Trace des Jésuites	08201101	19/03/2012	17,4	18,6
Galion	Gommier	08221101	15/03/2012	17,0	19,5
Grande Rivière Pilote	Beauregard	08811101	15/03/2012	10,5	10,9
Lézarde	Palourde Lézarde	08501101	15/03/2012	16,7	18,2
Duclos	Tunnel Didier	08301101	19/03/2012	18,3	18,6
Carbet	Source Pierrot	08320101	14/03/2012	17,3	17,7
Vauclin	Pont D5 - La Broue	08703101	13/03/2012	12,0	11,1
Anse Céron	Amont prise canal Habitation Céron	08014101	14/03/2012	16,9	16,1

IBD (et IPS) ≥ 17	Qualité très bonne
17 > IBD (et IPS) ≥ 13	Qualité bonne
13 > IBD (et IPS) ≥ 9	Qualité moyenne
9 > IBD (et IPS) ≥ 5	Qualité médiocre
IBD (et IPS) < 5	Qualité mauvaise

Deux stations du réseau de référence présentent un risque de non atteinte du bon état écologique avec un IBD de **moyenne** qualité; il s'agit de la Grande Rivière Pilote à Beauregard et de la Rivière du Vauclin à La Broue.

Le résultat est cependant à nuancer en ce qui concerne ces deux cours d'eau ; en effet, le peuplement de ces stations est très largement dominé par *Nitzschia inconspicua*. Ce taxon est mal noté par les indices développés pour la France métropolitaine. Il s'avère, selon nos observations, que cette espèce serait plus ubiquiste en Martinique et que sa présence est probablement plus en liaison avec le fond géochimique influençant les cours d'eau, surtout

Rapport Final Page 39/216

ceux du sud de la Martinique. L'IBD (et l'IPS) n'est, dans ce cas précis, pas adapté pour juger de la qualité biologique globale de ce milieu.

Tableau 16 : Indices diatomiques (IPS et IBD) et classes de qualité – campagne 2012 – Stations de surveillance

Cours d'eau	Localisation	Code SANDRE	Date de prélèvement	IPS	IBD
Grande Rivière	Stade de Grand Rivière	08102101	13/03/2012	18,3	18,2
Capot	Pr AEP-Vivé-Capot	08115101	13/03/2012	17,1	17,7
Lorrain	Amont confluent Pirogue	08203101	13/03/2012	16,9	17,8
Lorrain	Séguineau	08205101	13/03/2012	15,4	17,0
Bezaudin	Pont RD24 Sainte-Marie	08213101	13/03/2012	11,6	11,6
Galion	Grand Galion	08225101	13/03/2012	10,7	10,4
Deux courants	Pont Séraphin	08616101	13/03/2012	9,4	9,5
Grande Rivière Pilote	Amont Bourg Grande Rivière Pilote	08813103	15/03/2012	8,0	10,2
Petite Rivière Pilote	Pont Madeleine	08812101	15/03/2012	8,2	10,5
Oman	Dormante	08824101	15/03/2012	10,0	11,5
Rivières des Coulisses	Petit Bourg	08803101	15/03/2012	8,2	8,0
Lézarde	PONT RN1	08521102	15/03/2012	8,8	11,3
Lézarde	Gué de la Désirade	08521101	15/03/2012	13,9	15,5
Lézarde	Pont Belle-Île	08504101	15/03/2012	17,6	17,6
Blanche	Pont de l'Alma	08511101	14/03/2012	19,3	20,0
Monsieur	Pont de Montgérald	08412102	14/03/2012	11,0	12,2
Madame	Pont de Chaînes	08423101	14/03/2012	9,1	9,0
Case Navire	Case Navire (bourg Schœlcher)	08302101	14/03/2012	12,6	14,0
Carbet	Fond Baise	08322101	14/03/2012	15,7	15,6
Roxelane	Saint Pierre (ancien pont)	08329101	14/03/2012	10,7	11,6
Petite Rivière	Brasserie Lorraine	08533101	15/03/2012	9,6	10,5

IBD (et IPS) ≥ 17	Qualité très bonne
17 > IBD (et IPS) ≥ 13	Qualité bonne
13 > IBD (et IPS) ≥ 9	Qualité moyenne
9 > IBD (et IPS) ≥ 5	Qualité médiocre
IBD (et IPS) < 5	Qualité mauvaise

Certaines stations du réseau de surveillance présentent un risque de non atteinte du bon état écologique avec un IBD de **moyenne** qualité; il s'agit des rivières Bezaudin (Sainte Marie), Galion (Grand Galion), Deux Courants (Pont Séraphin), Grande Pilote (amont Bourg), Petite Pilote (Pont Madeleine), Oman (Dormante), Lézarde (Pont RN1), Monsieur (Pont de Montgérald), Madame (Pont de Chaînes), Roxelane (Ancien Pont à St Pierre) et Petite Rivière (Brasserie Lorraine).

Par ailleurs, avec une note indicielle IBD en qualité **médiocre**, un site du réseau de surveillance montrent un **très fort** risque de non atteinte du bon état écologique : Rivière des Coulisses à Petit Bourg.

Rapport Final Page 40/216

A noter : les notes indicielles IPS sont globalement plus pessimistes que les notes IBD, et déclassent le plus parfois les stations RCS en qualité inférieure.

Rapport Final Page 41/216

3.2.3. Bilan comparatif 2005-2012

Les notes indicielles IBD sont récapitulées depuis le début du suivi des stations dans le tableau ci-dessous. A des fins de comparaison, **elles ont toutes été recalculées** avec le logiciel Omnidia 5.3 (base avril 2009) à partir des inventaires réalisés depuis 2005 pour les sites de référence et depuis 2007 pour les sites de surveillance.

Ces chroniques permettent de visualiser de grandes tendances évolutives (Tableaux 17 et 18).

Cours d'eau Localisation Code SANDRE Grande Rivière 08101101 15.9 14 17.2 12.9 15.4 19.1 19.6 Anse Céron 08014101 15 13,5 15,2 15,8 11,2 14,7 18,2 16,1 Carbet 08320101 16.6 14.2 17.4 15.3 9.2 13.4 14.4 18.6 17.7 Lorrain Trace des Jésuites 08201101 14,1 15,3 16,7 15,4 13,7 13,4 13,7 16,7 18,6 Galion Gommier 08221101 19,3 19,4 18 19,7 20 19,6 19,7 18,4 19,5 Palourde Lézarde 08501101 20 20 20 Lézarde 18,8 19,6 19,5 19,8 20,0 18,2 Case Navire (Duclos) Tunnel Didier 08301101 15,1 13,9 15,7 12 18,6 18,6 Pont D5 - La Broue 08703101 10,4 20 10,6 Vauclin 11.8 13,4 13,5 11,1 Grande Rivière Pilote 08811101 10,6 6,7 11,1 10,6 10,9 Beauregard 17 17,6

Tableau 17 : Evolution des valeurs indicielles de 2005 à 2012 - Stations de Référence

Stations dont la qualité biologique globale tend à se dégrader :

- Vauclin (La Broue) dégradation en 2011 qui perdure en 2012
- Grande Rivière Pilote (Beauregard) dégradation en 2012

Stations ayant subi une dégradation ponctuelle :

- Grande Rivière (Trou Diablesse) en 2009
- Anse Céron (Habitation Céron) en 2009
- Carbet (Source Pierrot) en hivernage 2008
- Galion (Grand Galion) en 2009
- Lézarde (Gué de la Désirade) en 2008

La qualité biologique des stations de référence est très bonne en 2012, exceptée pour la Rivière Anse Céron en amont de la prise d'eau du canal Habitation Céron (perte de classe en bonne qualité) et les rivières du Vauclin à La Broue et Grande Pilote à Beauregard (dégradation en classe de moyenne qualité).

RAPPORT FINAL Page 42/216

Le réseau de surveillance s'est enrichi au cours du temps de plusieurs stations. Au total, 22 stations composent le réseau 2012 dont 14 sont suivies depuis 2007.

Tableau 18: Evolution des valeurs indicielles de 2007 à 2012 - Stations de surveillance

Cours d'eau	Localisation	Code SANDRE	Carême 2007	Carême 2008	Carême 2009	Carême 2010	Carême 2011	Carême 2012
Lorrain	Séguineau	08205101			15,3	20,0	15,6	17,0
Grande Rivière Pilote	Aval Bourg Rivière Pilote	08813102			2,4	5,8		
Monsieur	Pont de Montgérald	08412102			12,9	13,8	13,3	12,2
Case Navire	Case Navire (bourg Schœlcher)	08302101			11,7	14,6	14,8	14,0
Grande Rivière	Stade de Grand Rivière	08102101	17,0		14,2	13,6	17,1	18,2
Lorrain	Amont confluent Pirogue	08203101	20,0		15,6	15,6	16,3	17,8
Carbet	Fond Baise	08322101	13,1	14,8	13,7	17,2	16,7	15,6
Lézarde	Palourde Lézarde	08501101	19,5	20,0	19,8	20,0	20,0	18,2
Petite Rivière	Brasserie Lorraine	08533101	12,8	13,6	14,9	14,7	11,8	10,5
Anse Céron	RD 10 Habitation Céron	08015101	16,2		10,5	16,6		
Capot	Pr AEP-Vivé-Capot	08115101	13,5	19,1	11,3	18,9	17,0	17,7
Bezaudin	Pont RD24 Sainte-Marie	08213101	15,6	14,4	20,0	15,7	15,3	11,6
Galion	Grand Galion	08225101	14,7	16,0	12,2	16,0	17,2	10,4
Oman	Dormante	08824101	17,5	9,9	10,8	15,4	11,8	11,5
Rivières des Coulisses	Petit Bourg	08803101	14,8	9,8	7,8	7,8	14,6	8,0
Lézarde	PONT RN1	08521102		17,8	18,9	14,8	16,4	11,3
Lézarde	Gué de la Désirade	08521101	20,0	10,7	20,0	20,0	19,4	15,5
Petite Lézarde	Pont Belle-Île	08504101	13,7	11,1	19,3	17,4	15,0	17,6
Madame	Pont de Chaînes	08423101	15,6	12,7	14,4	11,0	11,7	9,0
Roxelane	Saint Pierre (ancien pont)	08329101	13,9	10,0	9,6	10,0	9,0	11,6
Deux Courants	Pont Seraphin	08616101					7,3	9,5
Pilote	amont Bourg Rivière Pilote	08813103					9,2	10,2
Blanche	Alma	08511101	15,8				19,9	20,0
Petite Pilote	Pont Madeleine	08812103					19,5	10,5

Stations dont la qualité biologique globale tend à se dégrader :

- Monsieur (Pont de Montgérald) dégradation en 2009 et 2012
- Petite Rivière (Brasserie Lorraine) dégradation en 2010 qui perdure jusqu'en 2012
- Bézaudin (Sainte Marie) dégradation en 2012
- Galion (Grand Galion) dégradation en 2012
- Oman (Dormante) dégradation en 2010 qui perdure jusqu'en 2012
- Coulisses (Petit Bourg) dégradation en 2012
- Lézarde (Pont RN1) dégradation en 2012
- Madame (Pont de Chaine) dégradation entre 2009 et 2010 qui perdure jusqu'en 2012
- Roxelane (St Pierre) dégradation entre 2007 et 2008 qui perdure jusqu'en 2012
- Petite Pilote (Ponte Madeleine) dégradation en 2012

Rapport Final Page 43/216

Stations ayant subi une dégradation ponctuelle :

- Case Navire (Bourg Schoelcher) en 2009
- Capot (AEP Vivé Capot) en 2009
- Galion (Grand Galion) en 2009
- Lézarde (Gué de la Désirade) en 2008
- Petite Lézarde (Pont Belle Île) en 2008

Stations dont la qualité biologique globale tend à s'améliorer :

- Grande Rivière (stade Grand Rivière)
- Lorrain (amont confluence Pirogue)

3.2.4. Conclusion

Réseau de référence :

Six stations sont considérées comme étant de **très bonne qualité biologique** selon l'IBD en 2011 :

- La Grande Rivière à Trou Diablesse
- La Rivière du Carbet à Source Pierrot
- La Rivière du Lorrain à la Trace des Jésuites
- La Rivière du Galion à Gommier
- La Rivière Lézarde à Palourde Lézarde
- La Rivière Case Navire (Bras Duclos) à Tunnel Didier

Une masse d'eau est de **bonne qualité biologique** selon l'IBD :

• La Rivière Anse Céron en amont de la prise d'eau du canal Habitation Céron

Deux masses d'eau sont de moyenne qualité biologique selon l'IBD :

- · La Grande Rivière Pilote à Beauregard
- La Rivière du Vauclin à La Broue

Réseau de surveillance :

Sept stations sont considérées comme étant de **très bonne qualité biologique** selon l'IBD en 2012 :

- La Rivière du Lorrain à Séguineau
- La Grande Rivière au Stade de Grand Rivière
- La Rivière du Lorrain amont confluence Pirogue
- La Rivière Lézarde à Palourde Lézarde
- La Rivière Capot à AEP Vivé Capot
- La Petite Rivière Lézarde au Pont Belle Île
- La Rivière Blanche à l'Alma

Rapport Final Page 44/216

Trois sont de bonne qualité biologique selon l'IBD :

- La Rivière Case Navire au bourg de Schoelcher
- La Rivière du Carbet à Fond Baise
- La Rivière Lézarde au Gué de la Désirade

Onze masses d'eau sont de moyenne qualité biologique selon l'IBD :

- La Rivière Monsieur au Pont de Montgérald
- La Petite Rivière à Brasserie Lorraine
- La Rivière Bezaudin à Sainte Marie
- La Rivière du Galion à Grand Galion
- La Rivière Oman à Dormante
- La Rivière Lézarde au Pont RN1
- La Rivière Madame au Pont de Chaînes
- La Roxelane à l'ancien pont à St Pierre
- La Rivière Deux Courants au Pont Séraphin
- La Grande Rivière Pilote amont Bourg Rivière Pilote
- La Petite Rivière Pilote à Pont Madeleine

Ces onze masses d'eau présentent donc un risque de non atteinte du bon état écologique.

Une masse d'eau est de médiocre qualité biologique selon l'IBD :

La Rivière des Coulisses à Petit Bourg

Cependant, les résultats présentés ci-avant ne reflètent probablement pas l'état biologique (écologique) réel des masses d'eau, comme nous l'avons évoqué, et plus particulièrement pour les cours d'eau du sud. En effet, ils découlent de méthodes indicielles élaborées pour les zones tempérées occidentales (métropole) et sont difficilement transposables en contexte insulaire tropical tel que la Martinique.

Un indice diatomique est en cours d'élaboration :

- Travail en systématique pour décrire et intégrer les taxons endémiques
- Définition (pour les nouvelles espèces) ou redéfinition (pour les espèces connues mais ayant une écologie sensiblement différente de celle observée en métropole) des traits écologiques de toutes les espèces présentes dans les cours d'eau martiniquais
- Création d'un Indice Diatomique Caraïbes adapté aux conditions biogéographiques tropicales insulaires

Ce travail de recherche permettra de définir avec plus de précision la qualité biologique globale des masses d'eau de Martinique.

Rapport Final Page 45/216

3.3. Etude de la macrofaune benthique des stations du réseau de référence

3.3.1. Caractérisation hydromorphologique des stations

Les tableaux suivants reprennent les pourcentages de recouvrement des substrats estimés et les plans d'échantillonnages établis pour chaque station (tableaux 19 et 20).

Tableau 19. Prélèvements des macroinvertébrés benthiques (couple substrat/vitesse) sur les stations du réseau de référence 2012 de Martinique.

			Sı	ıbstı	at (% de	re	couv	rem	ent)	-			Mara	Ima			Domi	nants			Domi	nants		
Nom station	В	Hyd	L	R	P-G	В	G	Helo	٧	s	Α	D		Marginaux				habita	abilité		représentativité				
	S1	S2	S3	S28	S24	S30	S9	S 10	S 11	S25	S18	S29	P1	P2	Р3	P4	P5	P6	P7	P8	Р9	P10	P11	P12	
Trou Diablesse			Р		35	25	4	Р		1		35	S9/N3	S9/N3	S25/N1	S25/N1	S24/N5	S30/N5	S29/N3	S24/N3	S24/N1	S29/N4	S30/N3	S24/N5	
Trace des Jésuites					30	36	4			10		20	S9/N3	S9/N3	S9/N3	S9/N3	S24/N4	S30/N5	S25/N1	S29/N4	S30/N4	S24/N3	S30/N3	S29/N5	
Tunnel Didier			1		37	55	4			Р		3	S3/N1	S9/N1	S29/N1	S9/N3	S24/N1	S30/N1	S24/N3	S30/N3	S30/N1	S30/N3	S24/N1	S30/N1	
Source Pierrot			1	Р	30	45	9			3		12	S3/N1	S3/N1	S25/N1	S25/N1	S24/N5	S30/N5	S9/N3	S29/N4	S30/N3	S30/N1	S24/N3	S30/N5	
Habitation Céron			1	Р	45	30	8			1		15	S3/N1	S3/N1	S25/N1	S25/N1	S24/N3	S30/N5	S9/N3	S29/N4	S24/N5	S24/N1	S30/N3	S24/N3	
Palo urde Lézarde	7		2		35	45	8					3	S3/N1	S3/N1	S29/N5	S29/N3	S1/N3	S24/N5	S30/N5	S9/N3	S30/N3	S24/N3	S30/N5	S24/N1	
Gommier	2		3	Р	37	24	4					30	S1/N3	S3/N1	S9/N3	S9/N3	S24/N3	S30/N3	S29/N3	S24/N1	S24/N5	S29/N5	S24/N3	S29/N1	
La Broue			2	1	60	30	7	Р					S3/N1	S3/N1	S28/N1	S28/N1	S24/N1	S30/N1	S9/N1	S24/N3	S24/N1	S24/N3	S24/N1	S20/N3	
Beauregard			4	2	70	3	10			8		3	S3/N1	S28/N1	S30/N1	S29/N1	S24/N1	S9/N1	S25/N1	S24/N3	S24/N1	S24/N3	S24/N1	S24/N3	

<u>Légende</u>:

Substrat (Sandre)	SANDRE	Habitabilité
Bryophytes	S1	11
Hydrophytes	S2	10
Litières	S3	9
Branchage, racines	S28	8
Pierres, galets	S24	7
Blocs	S30	6
Granulats	S9	5
Hélophytes	S10	4
Vases	S11	3
Sables, limons	S25	2
Algues	S18	1
Dalles, argiles	S29	0

CLASSE VITESSE (cm/s)	SANDRE	VITESSE
v<5	N1	Nulle
25>v≥5	N3	Lente
75>v≥25	N5	Moyenne
150>v≥75	N4	Rapide

Rapport Final Page 46/216

DEAL de la Martinique (972)

Tableau 20. Prélèvements des macroinvertébrés benthiques (couple substrat/vitesse) sur les stations du réseau RCS 2012 de Martinique.

				S	ubst	rat (% d	e rec	couvr	eme	ent)				Marginaux			Dominants				Dominants				
Nom station	Code SANDRE	В	Hyd	L	R	P-G	В	G	Helo	٧	s	Α	D	Marginaux				habita	bilité		re	prése	ntativ	ité		
	SANDIL	S1	S2	S3	S28	S24	S30	S9	S 10	S 11	S25	S18	S29	P1	P2	Р3	P4	P5 P6 P7 P8			P9	P10	P11	P12		
Amont stade Grand'Rivière	08102101			Р	Р	35	16	20	Р		4		25	S25/N1	S25/N1	S25/N1	S25/N1	S24/N3	S30/N5	S9/N3	S29/N5	S24/N5	S29/N3	S24/N4	S9/N1	
St-Pierre (ancien pont)	08329101				1	45	35	15	3		1		Р	S28/N1	S10/N1	S25/N1	S10/N3	S24/N5	S30/N5	S9/N3	S24/N3	S24/N1	S30/N4	S24/N5	S30/N3	
Pr AEP- Vivé Capot	08115101			1	Р	20	60	1	Р		8	Р	10	S3/N1	S3/N1	S9/N3	S9/N3	S24/N3	S30/N4	S25/N1	S29/N3	S30/N5	S30/N3	S30/N1	S30/N4	
Pont RD24 St-Marie	08213101			Р	Р	60	30	4	Р		4		2	S9/N3	S25/N1	S29/N3	S9/N3	S24/N5	S30/N5	S24/N3	S30/N3	S24/N1	S24/N5	S24/N3	S30/N5	
Fond Baise	08322101			Р	Р	40	30	15	Р		4		11	S25/N1	S25/N1	S25/N1	S25/N1	S24/N5	S30/N5	S9/N3	S29/N4	S24/N3	S30/N3	S24/N1	S30/N5	
Gué de la Désirade	08521101			1	Р	25	30	4			2		38	S3/N1	S9/N3	S25/N1	S9/N3	S24/N3	S30/N5	S29/N5	S24/N1	S29/N3	S30/N3	S29/N4	S24/N5	
Pont RN1	08521102			1	Р	64	3		2		20		10	S3/N1	S30/N5	S10/N1	S30/N3	S24/N3	S25/N1	S29/N1	S24/N5	S24/N1	S24/N3	S24/N5	S24/N3	
Pont Belle-lle	08504101			1	Р	10	30	25	Р		30		4	S3/N1	S3/N1	S29/N1	S29/N1	S24/N5	S30/N3	S9/N3	S25/N1	S30/N5	S25/N1	S9/N3	S30/N1	
Brasserie Lorraine	08533101				Р	12	20	40	8	Р			20	S29/N1	S10/N1	S11/N1	S28/N1	S24/N1	S30/N1	S9/N1	S10/N1	S9/N1	S9/N3	S30/N3	S29/N1	
Amont confluence Pirogue	08203101			1		20	40	5			4		30	S3/N1	S3/N3	S25/N1	S25/N3	S24/N3	S30/N4	S9/N3	S29/N5	S30/N3	S29/N4	S30/N5	S24/N1	
Grand Galion	08225101			1		85		4	Р		10		Р	S3/N1	S3/N1	S9/N3	S9/N3	S24/N3	S25/N1	S24/N5	S25/N1	S24/N3	S24/N5	S24/N1	S24/N3	
Pont de Chaîne	08423101				1	50	35	12	1		Р		1	S28/N1	S10/N1	S29/N3	S28/N3	S24/N3	S30/N5	S9/N3	S24/N1	S24/N5	S24/N3	S30/N3	S24/N1	
Petit Bourg	08803101					15	35	22	8		Р		20	S29/N1	S10/N1	S24/N1	S25/N1	S24/N3	S30/N3	S9/N1	S10/N1	S29/N1	S30/N1	S30/N3	S9/N1	
Dormante	08824101			2	Р	65	25	2			3		3	S3/N1	S9/N1	S25/N1	S29/N1	S24/N1	S30/N1	S24/N3	S30/N3	S24/N1	S24/N3	S24/N1	S24/N3	
Séguineau	08205101			Р	1	26	40	10	Р		3		20	S28/N1	S28/N1	S25/N1	S25/N1	S24/N3	S30/N5	S9/N3	S29/N5	S30/N3	S30/N4	S24/N5	S30/N5	
Pont de Montgérald	08412102			1	1	55	35		1		7			S3/N1	S28/N3	S10/N1	S3/N1	S24/N3	S30/N5	S25/N1	S24/N5	S24/N1	S24/N3	S30/N3	S24/N1	
Case Navire (bourg Schoelcher)	08302101			Р	Р	40	35	6	Р		19			S3/N1	S28/N1	S10/N1	S10/N1	S24/N3	S30/N3	S9/N1	S25/N1	S24/N1	S30/N5	S24/N3	S30/N1	
Amont Bourg Gde Rivière Pilote	08813103					94		Р	1		3		2	S10/N1	S25/N1	S29/N1	S25/N1	S24/N3	S24/N1	S24/N3	S24/N1	S24/N5	S24/N3	S24/N1	S24/N3	
Pont de l'Alma	08511101				1	38	30	10			1		20	S28/N1	S28/N1	S25/N2	S25/N1	S24/N3	S30/N5	S9/N3	S29/N4	S24/N5	S30/N3	S24/N1	S29/N5	
Pont Séraphin	08616101			1	1	80	3	11	Р				4	S3/N1	S28/N1	S30/N1	S29/N3	S24/N1	S9/N1	S24/N3	S9/N3	S24/N1	S24/N5	S24/N1	S24/N5	
Pont Madeleine	08812101				Р	82	10	4	Р		1		3	S9/N1	S25/N1	S29/N1	S9/N3	S24/N3	S30/N3	S24/N1	S30/N3	S24/N3	S24/N5	S24/N1	S24/N3	
Palourde	08501101	7		2		35	45	8					3	S3/N1	S3/N1	S29/N5	S29/N3	S1/N3	S24/N5	S30/N5	S9/N3	S30/N3	S24/N3	S30/N5	S24/N1	

<u>Légende</u> :

Substrat (Sandre)	SANDRE	Habitabilité
Bryophytes (B)	S1	11
Hydrophytes (Hyd)	S2	10
Litières (L)	S3	9
Branchage, racines (R)	S28	8
Pierres, galets (P-G)	S24	7
Blocs (B)	S30	6
Granulats (G)	S9	5
Hélophytes (Helo)	S10	4
Vases (V)	S11	3
Sables, limons (S)	S25	2
Algues (A)	S18	1
Dalles, argiles (D)	S29	0

CLASSE VITESSE (cm/s)	SANDRE	VITESSE
v<5	N1	Nulle
25>v≥5	N3	Lente
75>v≥25	N5	Moyenne
150>v≥75	N4	Rapide

Rapport Final Page 47/216

3.3.2. Paramètres physico-chimiques in situ

Les données physico-chimiques mesurées *in situ* sur chaque station du réseau de référence sont rappelées dans les tableaux 21 et 22.

Tableau 21. Paramètres physico-chimiques *in situ* de l'eau des stations du réseau de référence 2012 de Martinique.

Chatian	Cada Candua	Température	рН	Conductivité	Охуд	énation
Station	Code Sandre	°C	UpH	μS/cm	mg/l	%
Trou Diablesse	8101101	22.0	8.10	102	9.05	103.7
Trace des Jésuites	8014101	21.8	8.08	115	7.42	85.8
Tunnel Didier	8320101	22.5	7.95	143	8.51	100.3
Source Pierrot	8201101	22.8	8.31	121	8.48	100.3
Habitation Céron	8221101	22.4	8.13	145	9.17	103.9
Palourde Lézarde	8501101	21.6	7.90	69	8.49	98.6
Gommier	8301101	21.8	7.98	59	8.06	95.0
La Broue	8703101	24.9	7.95	765	7.21	86.8
Beauregard	8101101	24.5	8.14	1376	6.24	75.0
	Moyenne	22.7	8.06	321.7	8.07	94.4
	Min	21.6	7.90	59.0	6.24	75.0
	Max	24.9	8.31	1376.0	9.17	103.9
	ET	1.20	0.13	452.13	0.95	9.83

Rapport Final Page 48/216

Tableau 22. Paramètres physico-chimiques *in situ* de l'eau des stations de contrôle de surveillance et d'enquête 2012 de Martinique, en période de carême.

Nom station	Code	T°	рН	Conductivité	Oxygé	nation
Nom station	SANDRE	T°C	U pH	μs/cm	mg/l	%
Amont stade Grand'Rivière	08102101	21.8	8.10	100	9.06	103.3
St-Pierre (ancien pont)	08329101	24.3	8.25	218	8.26	98.6
Pr AEP-Vivé Capot	08115101	23.1	8.34	143	8.83	103.5
Pont RD24 St-Marie	08213101	24.3	8.09	154	8.20	98.8
Fond Baise	08322101	24.9	8.33	148	9.31	111.8
Gué de la Désirade	08521101	24.7	8.14	131	8.35	100.4
Pont RN1	08521102	24.6	7.82	115	7.10	85.4
Pont Belle-Ile	08504101	24.0	7.77	174	7.45	88.8
Brasserie Lorraine	08533101	26.6	8.11	330	8.44	105.1
Amont confluence Pirogue	08203101	22.8	8.06	103	8.32	97.0
Grand Galion	08225101	24.9	7.92	173	7.80	94.0
Pont de Chaîne	08423101	26.1	7.97	371	8.21	101.7
Petit Bourg	08803101	27.1	8.14	368	8.84	110.0
Dormante	08824101	23.5	7.88	482	6.18	73.5
Séguineau	08205101	26.2	8.17	109	8.00	98.8
Pont de Montgérald	08412102	25.8	7.84	226	8.32	102.3
Case Navire (bourg Schoelcher)	08302101	27.7	7.96	212	7.99	101.1
Amont Bourg Gde Rivière Pilote	08813103	26.9	8.08	630	6.7	83.5
Pont de l'Alma	08511101	20.6	8.07	94	8.82	102.5
Pont Séraphin	08616101	24.8	8.18	610	8.26	99.1
Pont Madeleine	08812101	24.7	8.03	405	6.6	79.5
Palourde	08501101	21.6	7.90	69	8.49	98.6
	Moyenne	24.6	8.1	243.9	8.1	97.2
	Minimum	20.6	7.8	69.0	6.2	73.5
	Maximum	27.7	8.3	630.0	9.3	111.8
	Ecart type	1.8	0.2	166.9	0.8	9.5

3.3.3. Abondance et richesse taxonomique

Réseau de Référence :

Les peuplements de macroinvertébrés benthiques sont étudiés en période de carême sur les 9 sites de référence de la Martinique depuis 2006. Les résultats d'abondance des macroinvertébrés benthiques de la campagne de carême 2012 peuvent alors être comparés aux résultats des campagnes de carême précédentes. Les abondances sont présentées dans le tableau 23.

Dans l'objectif de réaliser un atlas des macroinvertébrés benthiques et un indice biotique adapté aux cours d'eau de la Martinique, la détermination des organismes est poussée à des niveaux taxonomiques plus précis depuis 2010, dans le cadre d'un travail de recherche conduit par ASCONIT Consultants. Les richesses taxonomiques observées depuis 2010 doivent donc être comparées avec précaution à celles des années précédentes. Seules les richesses taxonomiques à partir de l'année 2010 sont donc présentées et discutées (Tableau 24).

Les résultats d'abondance sont relativement variables d'une année sur l'autre pour une même station. Alors qu'entre 2010 et 2011 l'abondance augmentait sur toutes les stations, les résultats observés en 2012 sont beaucoup moins unanimes. Le nombre d'individus a

Rapport Final Page 49/216

augmenté sur trois stations (Trou Diablesse, Source Pierrot et Beauregard). Il a quasiment doublé sur la station Beauregard (1055 individus en 2012, contre 592 en 2011). Sur la même période, 4 stations ont vu leur abondance diminuer (Trace des Jésuites, Céron, Palourde, Gommier). Les résultats sont comparables entre 2010 et 2011 pour les stations Tunnel Didier et La Broue.

Avec 128 individus seulement, la station Gommier est la moins peuplée de toutes en 2012. A l'inverse, et comme en 2011, la station Source Pierrot est la plus peuplée avec 1772 individus. Les diptères Chironomidae, les éphéméroptères Leptohyphidae (genre Tricorythodes) et Caenidae sont les macroinvertébrés les plus abondants sur ces deux stations. La station Beauregard compte aussi beaucoup d'individus (1055 plus précisément), essentiellement des mollusques Thiaridae. On observe ainsi de très grandes disparités entre les stations.

Tableau 23. Abondances en macroinvertébrés benthiques des stations de références suivies depuis 2006 en période de carême.

Rivière	Station	2006	2007	2008	2009	2010	2011	2012	Moyenne
GRANDE RIVIERE	Trou Diablesse	897	739	2689	452	278	399	771	889
LORRAIN	Trace des Jésuites			1600	1096	273	432	197	720
CASE NAVIRE	Tunnel Didier			449	115	332	278	280	291
CARBET	Source Pierrot	670	1130	2057	668	635	1695	1772	1232
CERON	Amont Habitation Céron	783	590	1932	480	794	1320	261	880
LEZARDE	Palourde	240	253	1805	428	216	546	427	559
GALION	Gommier	180	363	1139	165	135	758	128	410
VAUCLIN	Pont RD5 La Broue	337	821		675	484	699	693	618
PILOTE	Beauregard	853	970		465	404	592	1055	723

Moyenne	566	695	1667	505	395	747	620
Min	180	253	449	115	135	278	128
Max	897	1130	2689	1096	794	1695	1772
ET	305	316	713	292	211	466	530

Rapport Final Page 50/216

Pour ce qui est de la richesse taxonomique (Tableau 24), les stations du réseau de référence comptent en moyenne 30 taxons en 2012, contre 35 en 2011 et 25 en 2010. Les stations Source Pierrot et Palourde présentent aussi les richesses les plus élevées avec 41 taxons. Déjà en 2010, la richesse taxonomique était la plus forte à Source Pierrot. Alors qu'elle présente une des plus fortes abondances, la station Beauregard présente la plus faible richesse taxonomique enregistrée, avec 18 taxons répertoriés seulement (soit environ 15 taxons de moins par rapport à 2010 et 2011).

Tableau 24. Richesse taxonomique au carême 2012 pour les stations du réseau de référence.

Rivière	Station	Code		Richesse		Mayanna
KIVIERE	Station	Sandre	2010	2011	2012	Moyenne
GRANDE RIVIERE	Trou Diablesse	8101101	18	23	34	25
LORRAIN	Trace des Jésuites	8201101	24	28	25	26
CASE NAVIRE	Tunnel Didier	8301101	27	31	34	31
CARBET	Source Pierrot	8320101	29	44	41	38
CERON	Amont Habitation Céron	8014101	21	40	25	29
LEZARDE	Palourde	8501101	30	41	41	37
GALION	Gommier	8221101	26	43	33	34
VAUCLIN	Pont RD5 La Broue	8703101	18	28	22	23
PILOTE	Beauregard	8811101	34	33	18	28

Moyenne	25	35	30
Min	18	23	18
Max	34	44	41

Rapport Final Page 51/216

Réseau de Contrôle Opérationnel, de Surveillance et d'Enquête :

Les abondances en macroinvertébrés benthiques sur les différentes stations au carême 2012 ont été comparées aux résultats depuis le début du suivi en 2007 (Tableau 25). A l'instar du réseau de référence, les richesses taxonomiques ne sont présentées qu'à partir de 2010 (Tableau 26).

Tableau 25. Abondances en macroinvertébrés benthiques des stations des réseaux de contrôle suivies depuis 2007 en période de carême.

Station	Code Sandre	2007	2008	2009	2010	2011	2012	Moyenne
Amont stade Grand'Rivière	8102101	3160	-	372	455	581	1282	1170
St-Pierre (ancien pont)	8329101	22953	8509	2099	2870	1259	3853	6924
Pr AEP-Vivé Capot	8115101	1213	599	436	1470	665	1031	902
Pont RD24 St-Marie	8213101	1590	604	463	642	424	623	724
Fond Baise	8322101	1524	584	422	592	1089	780	832
Gué de la Désirade	8521101	1491	880	763	530	1110	315	848
Pont RN1	8521102	494	1135	280	313	404	435	510
Pont Belle-Ile	8504101	2293	731	318	162	1300	2061	1144
Brasserie Lorraine	8533101	1890	1823	175	300	972	311	912
Amont confluence Pirogue	8203101	966	-	1356	104	482	319	645
Grand Galion	8225101	617	1165	855	280	295	314	588
Pont de Chaîne	8423101	2107	909	1463	525	1712	2830	1591
Petit Bourg	8803101	898	1942	427	446	703	684	850
Dormante	8824101	1888	880	398	430	739	303	773
Séguineau	8205101	-	-	450	174	446	446	379
Pont de Montgérald	8412102	-	-	1379	654	7055	1108	2549
Case Navire (bourg Schoelcher)	8302101	-	-	1149	980	2841	2164	1784
Amont Bourg Gde Rivière Pilote	8813103	-	-	-	-	1307	308	808
Palourde	8501101	783	1805	428	216	546	427	701
Pont Séraphin	8616101	-	-	-	-	3814	6177	4996
Pont Madeleine	8812101	-	-	-	-	899	963	931
Pont de l'Alma	8511101	-	-	-	-	814	217	516

	Moyenne	2924	1659	735	619	1339	1225
Surveillance	Min	494	584	175	104	295	303
	Max	22953	8509	2099	2870	7055	6177

L'abondance moyenne sur le réseau de surveillance en 2012 (1225 individus) est semblable à celle obtenue en 2011 (1339 individus). Elle est toutefois supérieure à l'abondance minimale (442 individus en 2007) observée depuis le début du suivi en 2007. Même si globalement une baisse des abondances est notée entre 2011 et 2012, l'abondance a fortement augmenté sur certaines stations, notamment sur la station Ancien Pont St Pierre (abondance multipliée par trois). De manière générale, l'abondance calculée cette année reste inférieure à la moyenne des abondances calculées de 2006 à 2012.

Rapport Final Page 52/216

La **valeur maximale d'abondance** sur le réseau de surveillance se retrouve sur la station Pont Séraphin (6177 individus). Sur cette station, les éphéméroptères *Caenis femina* représentent 70% du peuplement en termes d'abondance. Quatre autres stations présentent des abondances élevées, supérieures à 2000 individus : les stations Saint Pierre Ancien Pont, Pont de Chaines, Case navire Bourg Schoelcher et Pont Belle Ile, riches en oligochètes, diptères Chironomidae, et Thiaridae pour les deux dernières stations, respectivement.

Il faut noter que tous réseaux confondus, la station d'enquête Pont de l'Alma présente l'abondance minimale (217 individus). Cette station, située en altitude comparativement aux autres stations peut être assimilée aux cours d'eau d'altitude du Nord de la Martinique.

Tableau 26. Richesse taxonomique au carême 2012 et depuis 2010 pour les stations du réseau de contrôle et de surveillance

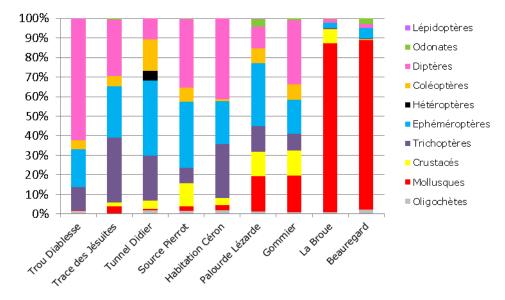
Nom station	Code SANDRE	2010	2011	2012	Moyenne
Amont stade Grand'Rivière	8102101	24	23	22	23
St-Pierre (ancien pont)	8329101	35	29	26	30
Pr AEP-Vivé Capot	8115101	24	32	37	31
Pont RD24 St-Marie	8213101	23	27	20	23
Fond Baise	8322101	30	31	28	30
Gué de la Désirade	8521101	16	20	33	23
Pont RN1	8521102	17	22	27	22
Pont Belle-Ile	8504101	11	31	42	28
Brasserie Lorraine	8533101	22	32	31	28
Amont confluence Pirogue	8203101	19	39	33	30
Grand Galion	8225101	18	22	26	22
Pont de Chaîne	8423101	17	22	34	24
Petit Bourg	8803101	13	24	24	20
Dormante	8824101	20	35	23	26
Séguineau	8205101	21	30	29	27
Pont de Montgérald	8412102	28	34	32	31
Case Navire (bourg Schoelcher)	8302101	36	33	44	38
Pont Séraphin	8616101	-	22	30	26
Amont Bourg Gde Rivière Pilote	8813103	-	25	41	33
Palourde	8501101	30	40	29	33
Pont Madeleine	8812102	-	24	29	27
Pont de l'Alma	8511101	-	36	28	32

	Moyenne	22	29	31
Surveillance et/ou opérationnel	Min	11	20	20
	Max	36	40	44

Comme en 2011, les communautés de macroinvertébrés benthiques des stations du réseau de surveillance présentent 30 taxons (valeur médiane). La station Palourde (qui appartient aussi au réseau de référence) enregistre en 2012 la richesse maximale avec 40 taxons.

Rapport Final Page 53/216

C'est la station de surveillance Pont RD24 Ste Marie qui présente la plus faible richesse taxonomique, avec 20 taxons. A l'inverse, la plus forte richesse a été enregistrée sur la station Case Navire bourg Schoelcher (soit 44 individus). A quelques exceptions près, toutes les stations présentent des richesses comparables ou légèrement supérieures à celles de 2011. Avec 41 taxons (16 taxons supplémentaires par rapport à 2011), la station Amont Bourg Rivière Pilote est parmi les plus diversifiées.


La richesse taxonomique sur les deux stations d'enquête est comparable à celles des autres stations du réseau RCS.

3.3.4. Structure du peuplement

Réseau de Référence :

Les groupes dominants sur les stations du réseau de référence sont les ordres des Diptères et Ephéméroptères (Tableau 27). L'ordre des Diptères est dominant sur 4 des 9 stations, soit Trou Diablesse, Source Pierrot, Habitation Céron et Gommier. Le groupe des Ephéméroptères domine sur 2 stations également : Tunnel Didier et Palourde. L'ordre des Trichoptères est dominant seulement sur la station Trace des Jésuites. Depuis 2010, le groupe des mollusques domine sur les deux stations situées dans le sud de l'île, soit La Broue et Beauregard.

Globalement, les Odonates, Lépidoptères, Hétéroptères, Coléoptères et Oligochètes sont présents dans une moindre mesure sur le réseau de référence (Figure 5).

Figure 5. Répartition de l'abondance entre les grands groupes taxonomiques pour chaque site de référence au carême 2012.

Rapport Final Page 54/216

Les inventaires joints en annexe du présent document montrent que les stations dominées par le groupe des diptères le sont toutes plus précisément par des Chironomidae (Orthocladinae pour les stations Trou Diablesse, Source Pierrot et Habitation Céron, et Tanypodinae pour la station Gommier. Les Orthocladinae et Tanypodinae constituent une sous-famille des Chironomidae qui regroupe des individus le plus couramment « faiblement polluorésistants » (oligosaprobes) à « relativement polluorésistants » (β -mésosaprobes), selon la tribu d'appartenance $^{(1)}$.

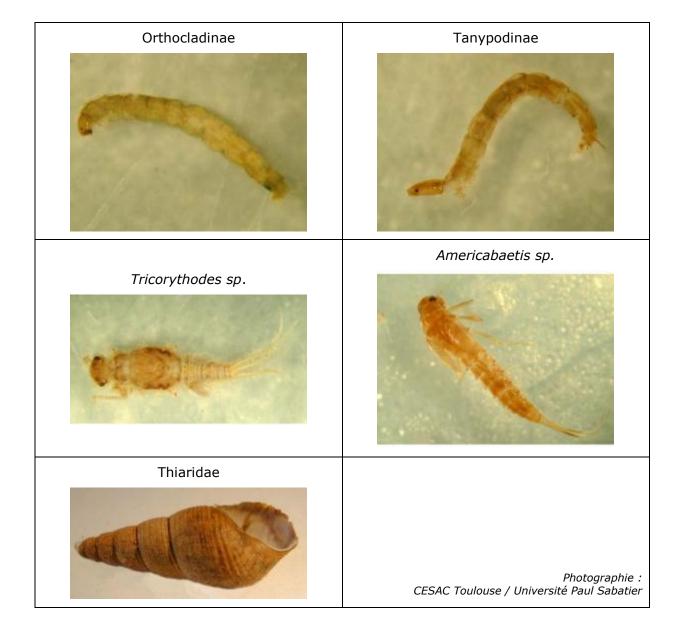
Le tableau suivant présente le taxon dominant pour chaque station inventoriée en 2012. Le mollusque Thiaridae domine dans les deux stations sud de l'île (La Broue et Beauregard). Ce même taxon dominait déjà en 2009 et 2010 sur ces stations. D'une manière générale, les mollusques sont peu polluosensibles et sont nombreux dans les milieux riches en matière organique. Ce taxon, non répertorié en métropole, semble être relativement polluorésistant.

Les peuplements des stations Palourde et Tunnel Didier sont dominés par les éphéméroptères des genres Americabaetis (Baetidae) et Tricorythodes (Leptohyphidae), respectivement. D'après notre expérience de la macrofaune benthique des Petites Antilles, ces deux genres cités, absents de métropole, sont largement répandus en Martinique.

D'une manière générale, tous les taxons mentionnés sont largement répandus en Martinique.

Tableau 27. Taxon dominant sur chaque station de référence au carême 2012.

Rivière	Station	Code Sandre	Taxon dominant
GRANDE RIVIERE	Trou Diablesse	08101101	Orthocladinae (diptère Chironomidae)
LORRAIN	Trace des Jésuites	08201101	Orthocladinae (diptère Chironomidae)
CASE NAVIRE	Tunnel Didier	08301101	Tricorythodes (Ephéméroptère Leptohyphidae)
CARBET	Source Pierrot	08320101	Orthocladinae (diptère Chironomidae)
CERON	Amont Habitation Céron	08014101	Orthocladinae (diptère Chironomidae)
LEZARDE	Palourde	08501101	Americabetis sp. (éphéméroptère Baetidae)
GALION	Gommier	08221101	Tanypodinae (diptère Chironomidae)
VAUCLIN	Pont RD5 La Broue	08703101	Thiaridae (mollusque)
PILOTE	Beauregard	08811101	Thiaridae (mollusque)



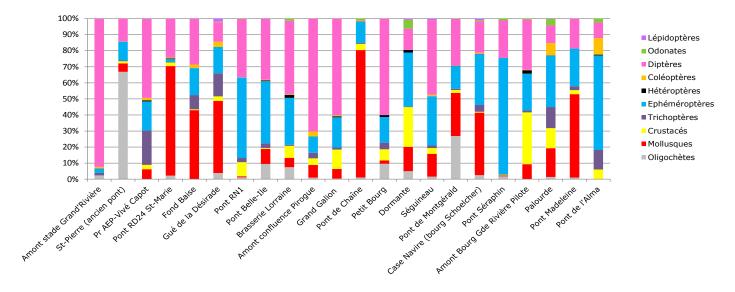
Rapport Final Page 55/216

¹ Tachet H., Richoux P., Bournaud M., Usseglio-Polatera P.2010. Invertébrés d'eau douce, systématique, biologie, écologie. CNRS Editions.

Rapport Final Page 56/216

Rapport Final Page 57/216

Réseau de Contrôle et de Surveillance et d'Enquête :


La répartition de l'abondance des groupes taxonomiques (Figure 6) révèle 4 types de stations :

- celles dominées par les mollusques (4): Pont RD24 Ste Marie, Fond Baise, Pont de Chaines, Pont Madeleine; Dans tous les cas, c'est la famille des Thiaridae qui prédomine (Tableau 28).
- celles dominées par les **diptères** (5): Amont Stade de Grand'Rivière, AEP Vivé Capot, Amont Confluence Pirogue, Grand Galion, Petit Bourg. Plus précisément, ces stations sont dominées par un taxon de la famille des Chironomidae, soit Orthocladinae ou Tanytarsini (Tableau 28).
- celles dominées par les **éphéméroptères** (3) : Pont RN1, Pont Séraphin, Pont de l'Alma. *Caenis femina* (famille Caenidae) est le taxon majoritaire sur les deux premières stations. Les genres Tricorythodes (famille Leptohyphidae) et Fallceon (Baetidae) sont majoritaires sur la station Pont de l'Alma (Tableau 28).
- celle dominée par les oligochètes (1) : Ancien Pont Saint Pierre ;
- celle dont les peuplements sont davantage équilibrés (9) : Gué de la Désirade, Pont Belle Ile, Brasserie Lorraine, Dormante, Séguineau, Pont de Montgérald, Case Navire Bourg Schoelcher, Amont Bourg Grande Rivière Pilote, Palourde (Tableau 28).

Comme en 2011, le groupe des trichoptères ne domine sur aucune station, il représente au maximum 21% du peuplement (station AEP Vivé Capot).

Les lépidoptères, odonates, coléoptères et hétéroptères sont les groupes les moins représentés (<5%).

Figure 6. Répartition de l'abondance entre les grands groupes taxonomiques pour chaque site du réseau de contrôle et de surveillance au carême 2012.

Page 58/216

Tableau 28. Taxon dominant sur chaque station du réseau de contrôle et surveillance au carême 2012.

Station	Code Sandre	Taxon dominant
Amont stade Grand'Rivière	8102101	Orthocladinae (diptère Chironomidae)
St-Pierre (ancien pont)	8329101	Oligochètes
Pr AEP-Vivé Capot	8115101	Orthocladinae (diptère Chironomidae)
Pont RD24 St-Marie	8213101	Thiaridae (mollusque gastéropode)
Fond Baise	8322101	Thiaridae (mollusque gastéropode)
Gué de la Désirade	8521101	Thiaridae (mollusque gastéropode)
Pont RN1	8521102	Tanytarsini (diptère Chironomidae) Caenis femina (Ephéméroptère)
Pont Belle-Ile	8504101	Orthocladinae (diptère Chironomidae)
Brasserie Lorraine	8533101	Tanytarsini (diptère Chironomidae)
Amont confluence Pirogue	8203101	Orthocladinae (diptère Chironomidae)
Grand Galion	8225101	Orthocladinae (diptère Chironomidae)
Pont de Chaîne	8423101	Thiaridae (mollusque gastéropode)
Petit Bourg	8803101	Tanytarsini (diptère Chironomidae)
Dormante	8824101	Caenis femina (Ephéméroptère Caenidae)
Séguineau	8205101	Orthocladinae (diptère Chironomidae)
Pont de Montgérald	8412102	Oligochètes
Case Navire (bourg Schoelcher)	8302101	Thiaridae (mollusque gastéropode)
Pont Séraphin	8616101	Caenis femina (Ephéméroptère Caenidae)
Amont Bourg Gde Rivière Pilote	8813103	Micratya poeyi (crustacé)
Palourde	8501101	Americabaetis (Ephéméroptère Baetidae)
Pont Madeleine	8812102	Thiaridae (mollusque gastéropode)
Pont de l'Alma	8511101	Fallceon ater (Ephéméroptère Baetidae) Tricorythodes griseus (Leptohyphidae)

Rapport Final Page 59/216

Précisions écologiques sur les taxons principaux dominants :

Les mollusques **Thiaridae**: ces mollusques non natifs de la Martinique sont envahissants. On les retrouve principalement en zone aval des cours d'eau. Ils peuvent y être très abondants lorsque la pollution organique est importante, et les vitesses de courant faibles. Ce taxon est absent de métropole. Il est polluorésistant.

Les **oligochètes**: ces vers annélides sont des organismes fouisseurs vivant dans les sédiments fins. Ils se déplacent peu et ont donc la particularité d'être de bons bioindicateurs de la qualité des sédiments. Ils sont des indicateurs de pollution chimique (métaux lourds) mais aussi de pollution organique (hydrocarbures HAP et eutrophisation suite à un excédent d'apport d'azote et/ou phosphore). Ces organismes ont développé un pigment rouge équivalent à l'hémoglobine humaine qui leur permet de survivre en conditions anoxiques (absence d'oxygène). Ils sont classés parmi les organismes les plus polluorésistants pour le calcul de l'indice biotique IBGN utilisé en métropole.

Les Chironomidae (Orthocladinae, Tanytarsini, Chironomini, Tanypodinae): Tout comme les oligochètes, les larves de chironomes sont de bons bioindicateurs de pollution organique vivant en surface du sédiment. Ils sont aussi appelés « vers de vase ». Ils ont eux aussi développé un pigment rouge équivalent à l'hémoglobine humaine qui leur permet de survivre en conditions anoxiques. La famille des Chironomidae compte parmi les plus polluorésistantes pour le calcul de l'indice biotique IBGN utilisé en métropole.

➤ Caenis femina (Caenidae): les éphéméroptères de cette famille sont assez rares dans la partie nord de l'île, en amont comme en aval. Ils sont davantage abondants dans la partie sud de l'île, dont ils affectionnent les faciès d'écoulement lentique. Ils sont tolérants à la pollution et aux températures parfois élevées des rivières du sud de l'île.

Americabaetis sp. (Baetidae) : ce taxon est un des plus communs en Martinique, il est ubiquiste. C'est un collecteur qui affectionne les milieux lotiques d'érosion. Il est a priori assez tolérant à la pollution.

Fallceon ater (Baetidae) et Tricorythodes griseus (Leptohyphidae): ces taxons sont abondants dans les milieux lotiques érosifs, donc en particulier dans en amont des cours d'eau dans la partie nord de l'île. Il n'est alors pas étonnant qu'ils dominent sur la station d'enquête Pont de l'Alma, qui est la station la plus en altitude du réseau (450m).

Photographies : CESAC / Université Paul Sabatier

Remarque : des travaux sont en cours afin de déterminer avec davantage de précisions les preferenda écologiques des taxons (habitats) et leur degré de polluosensibilité/polluorésistance en situation polluée.

Rapport Final Page 60/216

3.3.5. Indices de diversité

Réseau de Référence :

Les résultats macroinvertébrés benthiques sont analysés par une série d'indices structuraux que sont :

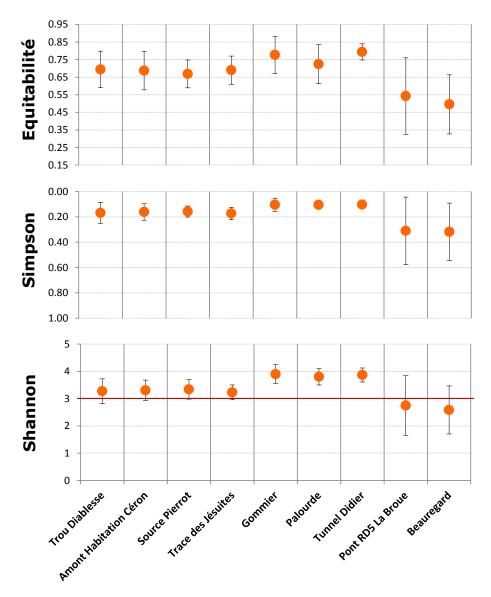
- l'indice de **Shannon** pour l'évaluation de la diversité en espèces. Une valeur >3 indique un peuplement bien diversifié ;
- l'indice de **Simpson** pour l'évaluation du niveau de dominance entre les taxons. Une valeur égale à 0 indique qu'il n'y a pas de dominance du peuplement par un taxon alors qu'une valeur égale à 1 révèle qu'un taxon est majoritaire dans le peuplement (d'où l'échelle inversée pour la représentation graphique des résultats);
- l'indice d'**Equitabilité** pour l'évaluation de l'équilibre dans la répartition des taxons. L'indice varie de 0 (une espèce représentant la totalité des captures) à 1 (équirépartition des espèces). Les valeurs de l'équitabilité renseignent donc sur l'homogénéité des captures et l'équilibre du peuplement.

Tableau 29. Valeurs des différents indices structuraux calculés pour les sites de référence sur la base des données de carême 2012.

Rivière	Station	Code Sandre	Indice de Shannon	Indice de Simpson	Indice d'Equitabilité
GRANDE RIVIERE	Trou Diablesse	8101101	2.73	0.33	0.54
LORRAIN	Trace des Jésuites	8201101	3.63	0.13	0.78
CASE NAVIRE	Tunnel Didier	8301101	4.28	0.08	0.84
CARBET	Source Pierrot	8320101	3.61	0.13	0.67
CERON	Amont Habitation Céron	8014101	3.79	0.09	0.82
LEZARDE	Palourde	8501101	4.18	0.08	0.78
GALION	Gommier	8221101	4.32	0.06	0.86
VAUCLIN	Pont RD5 La Broue	8703101	1.19	0.72	0.27
PILOTE	Beauregard	8811101	1.01	0.75	0.24

Les résultats des indices structuraux placent six des neuf stations à un bon niveau (indice de Shannon>>3 et indice de Simpson <0,13). Les stations Trou Diablesse, La Broue et Beauregard présentent de plus mauvais résultats, avec des indices de Shannon inférieurs à 3 (S=2,73, S=1,19 et S=1,01, respectivement) et les indices d'équitabilité les plus bas (E=0,54, E=0,27 et E=0,24, respectivement).

Malgré la constante augmentation de la richesse taxonomique depuis 2010 (18, 23 et 34 taxons en 2010, 2011 et 2012, respectivement), la station Trou Diablesse présente en 2012 de mauvais résultats. La forte dominance des Orthocladinae dans le peuplement (plus de la moitié des individus) cette année explique ces mauvais résultats.


Les stations Beauregard et La Broue présentent elles aussi de mauvais résultats en 2012. Les peuplements sont peu diversifiés (S=1,01 et S=1,19 respectivement) et fortement déséquilibrés (E=0,24 et E=0,27 respectivement). Les indices Simpson et Equitabilité traduisent une très forte dominance des Thiaridae sur les peuplements invertébrés benthiques de ces deux stations. En effet, ceux-ci représentent plus de 75% du peuplement. Cette forte dominance des Thiaridae sur ces deux stations situées dans la partie sud de l'île est signalée depuis 2010.

Finalement, les résultats des indices structuraux placent les stations Gommier, Tunnel Didier, Source Pierrot et Palourde aux meilleurs niveaux (indices de Shannon>4, Equitabilité>0,57).

Rapport Final Page 61/216

Si l'on tient compte des résultats des campagnes d'hivernage et de carême de 2005 à 2012 (figure suivante), on retrouve les mêmes tendances que celles observées depuis 2010. Les stations Gommier, Palourde et Tunnel Didier sont les trois stations les mieux classées. Les stations Trou Diablesse, Amont Habitation Céron, Source Pierrot et Trace des Jésuites présentent aussi de bons résultats. Les résultats des stations La Broue et Beauregard sont les moins bons et présentent une grande variabilité sur cette période comparativement aux autres stations du réseau de référence.

Figure 7. Valeurs des différents indices structuraux calculés sur les sites de références entre 2005 et 2012 (moyenne ± ET). Les résultats des campagnes de carême et hivernage sont pris en comptes.

Rapport Final Page 62/216

Réseau de Contrôle et de Surveillance et d'Enquête :

Tableau 30. Valeurs des différents indices structuraux calculés pour les sites du réseau de contrôle et surveillance de la Martinique sur la base des données de carême 2012.

Station	Code Sandre	Shannon	Simpson	Equitabilité	Abondance	Richesse
Amont stade Grand'Rivière	08102101	0.82	0.81	0.18	1282	22
St-Pierre (ancien pont)	08329101	1.84	0.47	0.39	3853	26
Pr AEP-Vivé Capot	08115101	3.09	0.23	0.59	1031	37
Pont RD24 St-Marie	08213101	1.59	0.51	0.37	623	20
Fond Baise	08322101	2.80	0.25	0.58	780	28
Gué de la Désirade	08521101	3.37	0.21	0.67	315	33
Pont RN1	08521102	3.62	0.10	0.76	435	27
Pont Belle-Ile	08504101	3.59	0.13	0.67	2061	42
Brasserie Lorraine	08533101	3.61	0.13	0.73	311	31
Amont confluence Pirogue	08203101	2.90	0.33	0.58	319	33
Grand Galion	08225101	3.29	0.16	0.70	314	26
Pont de Chaîne	08423101	1.65	0.60	0.32	2830	34
Petit Bourg	08803101	3.03	0.21	0.66	684	24
Dormante	08824101	3.40	0.14	0.75	303	23
Séguineau	08205101	3.22	0.20	0.66	446	29
Pont de Montgérald	08412102	3.39	0.14	0.68	1108	32
Case Navire (bourg Schoelcher)	08302101	3.15	0.20	0.58	2164	44
Amont Bourg Gde Rivière Pilote	08813103	3.77	0.10	0.77	308	30
Palourde	08501101	4.18	0.08	0.78	427	41
Pont Séraphin	08616101	1.78	0.51	0.37	6177	29
Pont Madeleine	08812101	2.97	0.27	0.61	963	29
Pont de l'Alma	08511101	3.99	0.08	0.83	217	28

La compilation des trois indices structuraux classe en meilleure position **les stations Palourde Lézarde et Pont de l'Alma**. Toutes deux présentent un indice de Shannon supérieur ou égal à 4, un indice de Simpson inférieur à 0,10 et un indice d'équitabilité supérieur à 0,77. Palourde (rivière Lézarde) est depuis 2009 l'une des stations les mieux classées. **12 autres stations présentent des peuplements diversifiés et équilibrés**, dont les stations Gué de la Désirade, Petit bourg, Pont de Montgérald, Case Navire, et Amont Bourg Grande Rivière Pilote qui présentaient en 2011 de mauvais résultats.

8 sites sont mal classés en 2012 du point de vue des indices structuraux : il s'agit de Amont Stade Grand'Rivière, Saint-Pierre, Pont RD24 Ste Marie, Fond Baise, Pont de Chaines, Pont de Montgérald, Pont Séraphin et Pont Madeleine. Toutes ces stations étaient déjà mal classées en 2011.

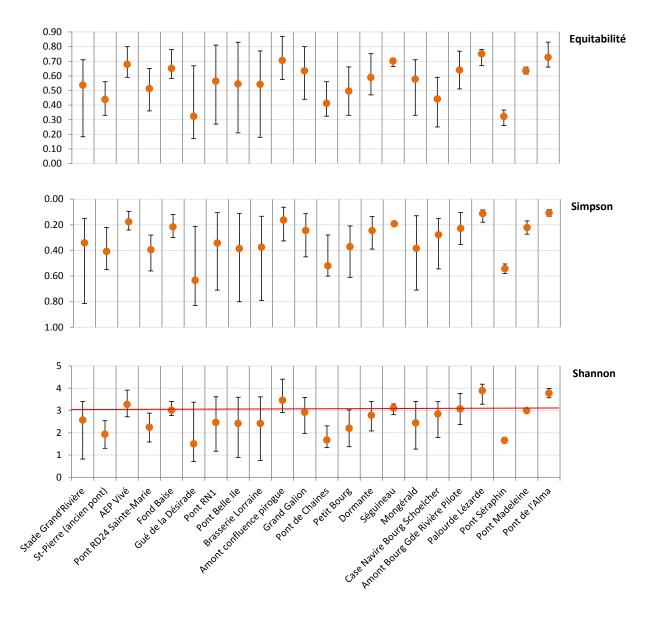
La station la plus altérée sur la base de ces indices est Amont Stade de Grand'Rivière, qui comme en 2011, présente un peuplement largement déséquilibré (E=0,18 en 2012) et dominé par les diptères Orthocladinae (90% du peuplement). La prédominance d'un taxon (Thiaridae, Caenidae ou oligochètes) explique aussi les mauvais résultats des stations Pont RD24 Ste Marie, Pont de Chaines, Pont Séraphin et Saint Pierre Ancien Pont.

Rapport Final Page 63/216

Les deux stations d'enquête (Pont Madeleine et Pont de l'Alma) enregistrent toutes deux des résultats particulièrement bons (indices de Shannon respectivement égaux à 2,97 et 3,99 et indices d'équitabilité supérieurs à 0,61).

L'examen combiné des résultats des trois indices structuraux pour la période 2007-2012 (voir figure ci-dessous) révèle que **les sites de meilleure qualité du réseau sont de loin les stations Palourde Lézarde et la station d'enquête Pont de l'Alma**. Elles affichent toutes deux un indice de Shannon moyen supérieur à 3, un indice de Simpson inférieur à 0,2 et une équitabilité avoisinant 0,75 sur la période 2007-2012, avec une faible variabilité.

Les stations **Amont confluence Pirogue et AEP Vivé Capot** sont aussi qualifiés comme des **sites de bonne qualité**, mais avec une plus grande variabilité sur la période de suivi.


A l'inverse, les stations de moins bonne qualité sont St-Pierre (ancien pont), Pont RD24 Sainte Marie, Pont de Chaines, Petit Bourg et Pont Séraphin : depuis qu'elles sont suivies, l'indice de Shannon a toujours été inférieur à 3.

Les stations Stade de Grand Rivière, Pont RN1, Gué de la Désirade, Pont Belle Ile, Brasserie Lorraine, Grand galion, Dormante, Case Navire Bourg Schoelcher et Montgérald sont aussi de moins bonne qualité mais sont de plus les moins stables de toutes sur la période étudiée.

On notera que, depuis le depuis du suivi en 2007, les résultats des indices structuraux sont chaque année moins bons pour la station Amont Stade Grand'Rivière. Depuis 2011, l'indice de Shannon est inférieur à 3 (Sh=2,19 en 2011 et Sh=0,82 en 2012).

Rapport Final Page 64/216

Figure 8. Valeurs des différents indices structuraux calculés sur les sites du réseau de contrôle, d'enquête et de surveillance entre 2007 et 2012 (moyenne ± Min et Max).

Rapport Final Page 65/216

3.3.6. Synthèse Invertébrés benthiques

Réseau de Référence :

Les valeurs moyennes sur 2005-2012 des trois indices structuraux (Equitabilité, Shannon, Simpson) révèlent qu'en termes de peuplements invertébrés benthiques les stations présentant la plus mauvaise qualité sont celles du sud, sur les rivières Vauclin (Pont RD5 La Broue) et Pilote (Beauregard) (indice de Shannon moyen <3 et dominance des Thiaridae).

Les notes d'indices structuraux les plus élevées correspondent, comme l'an passé, aux stations Gommier sur la rivière du Galion, Palourde sur la rivière Lézarde et Tunnel Didier sur la rivière Case Navire. Les stations Trace des Jésuites, Amont Habitation Céron et Tunnel Didier manifestent aussi de très bonnes notes. L'indice de Shannon indique une bonne diversité avec une valeur supérieure à 3,61, et l'indice d'Equitabilité révèle l'absence de dominance d'un taxon puisque les valeurs sont supérieures à 0,5.

Cette année, et malgré le fait que sa richesse taxonomique ait fortement augmenté par rapport à 2010 (11 taxons supplémentaires), la station Trou Diablesse enregistre un de ses plus mauvais résultats depuis 2005. La dominance des diptères Orthocladinae dans le peuplement explique ces moins bons résultats.

Réseau de Contrôle et de Surveillance et d'Enquête :

Les indices structuraux (Shannon, Simpson, Equitabilité) recueillis pour les six années de suivi des stations de surveillance permettent de mettre en avant les stations :

- les mieux classées: Palourde sur la rivière Lézarde (située en zone centre, en amont sur la rivière Lézarde, et qui est également une station de référence), la station d'enquête Pont de l'Alma sur la rivière Blanche, Amont confluence Pirogue sur la rivière du Lorrain et AEP Vivé Capot sur la rivière Capot. Toutes ces stations sont situées dans la partie Nord de l'île, dans la partie amont des cours d'eau où les pressions anthropiques sont généralement faibles. La pression hydromorphologique due à la présence de la prise d'eau sur la rivière Capot reste limitée en 2012.
- les moins bien classées: St-Pierre (ancien pont) sur la Roxelane, Pont de Chaines sur la Rivière Madame, Petit Bourg sur la rivière des Coulisses, Pont Séraphin sur la rivière Deux Courants et Pont RD24 Sainte Marie sur la rivière Bezaudin. Les stations Saint Pierre et Pont de Chaines sont situées en zone fortement urbanisée récupérant des rejets d'eaux usées. Les autres stations récupèrent également une pollution agricole.

Les deux stations d'enquête (Pont de l'Alma et Pont Madeleine) présentent de bons résultats, aussi bien en termes de richesse que d'équilibre des peuplements. Ces deux stations sont suivies depuis 2011 seulement. Bien que la variabilité des résultats soit faible entre 2011 et 2012, le suivi de ces deux stations doit se poursuivre afin de confirmer les résultats, particulièrement sur Pont Madeleine qui, étant située en zone urbanisée et agricole, présente davantage de risques de dégradation.

Remarque : Il faut rappeler qu'on ne peut déduire la qualité du milieu à la simple vue des indices structuraux, de l'abondance totale ou encore de la richesse taxonomique, la polluosensibilité et les preferenda écologiques des différents taxons de Martinique n'étant à ce jour pas encore caractérisés. La construction d'un indice biotique macroinvertébrés adapté au contexte antillais est en cours et devrait permettre de fiabiliser les conclusions quant à la qualité biologique des stations suivies.

Rapport Final Page 66/216

3.4. Etude de l'ichtyofaune et des macrocrustacé

3.4.1. L'habitat sur les sites de référence

La proportion sur chaque station des faciès échantillonnés sur les sites de référence est représentée dans la figure 9.

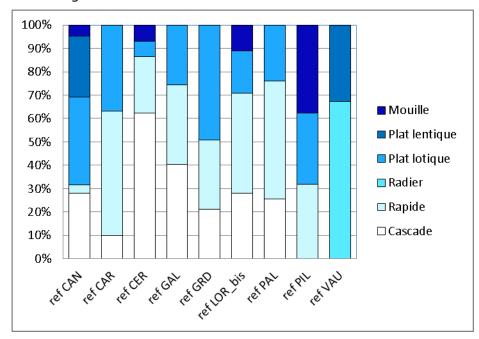


Figure 9. Répartition des faciès échantillonnés sur les stations de référence - Année 2012

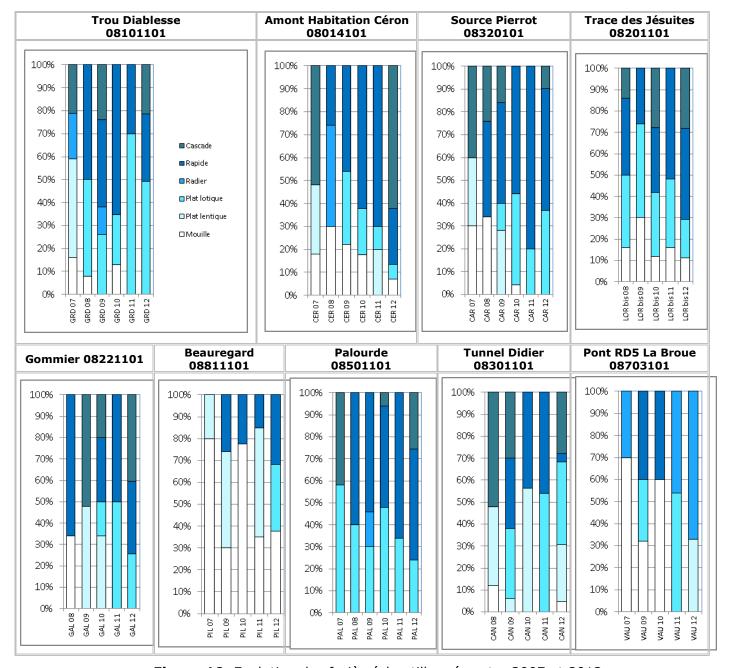
Les stations présentent une diversité d'échantillonnage supérieure à l'année 2011 puisque plus de la moitié (55%) ont été couvertes sur au moins 3 faciès (contre deux faciès seulement en 2011). Seule la station Vauclin a été couverte sur deux faciès.

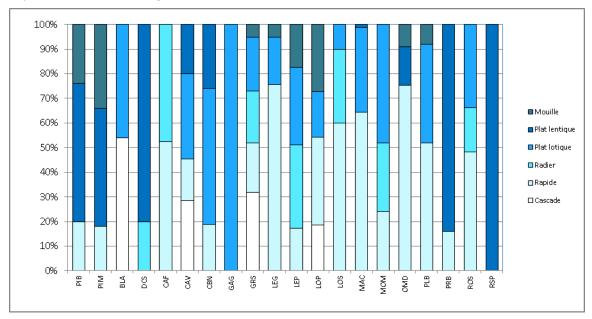
Les facies majoritairement échantillonnés sont le rapide (30%), le plat lotique (25%) et la cascade (24%).

Une comparaison de la représentativité des faciès a pu être faite avec les années précédentes (Figure 10).

Les proportions sont globalement bien conservées entre les années avec toutefois des différences dans la nomination des faciès surtout en 2008. Les similitudes sont donc globalement meilleures entre les 5 dernières années. L'hydrologie des stations est essentiellement de type rapide.

Rapport Final Page 67/216



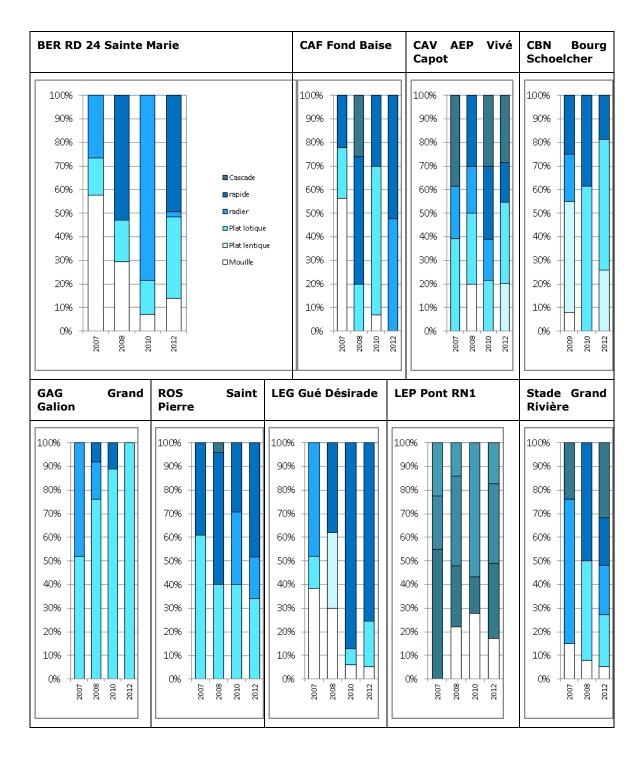

Figure 10. Evolution des faciès échantillonnés entre 2007 et 2012.

Rapport Final Page 68/216

3.4.2. L'habitat sur les sites de surveillance

La proportion sur chaque station des faciès échantillonnés sur les sites de référence est représentée dans la figure 11.

Figure 11. Répartition des faciès échantillonnés sur les stations de surveillance – Année 2012 Les stations présentent une diversité d'échantillonnage sensiblement identique à l'année 2011 puisque.


Les facies majoritairement échantillonnés sont le rapide (31%), le plat lotique (25%) et le plat lentique (22%).

Comme dans le cas des sites de référence, une comparaison de la représentativité des faciès été réalisée avec les années précédentes (Figure 12).

Les proportions sont relativement similaires aux années précédentes en 2012. Les sites n'ayant pas fait l'objet de campagne de mesure en 2009 il est difficile de statuer sur une tendance évolutive interannuelle. L'hydrologie des stations est essentiellement de type rapide.

Rapport Final Page 69/216

Rapport Final Page 70/216

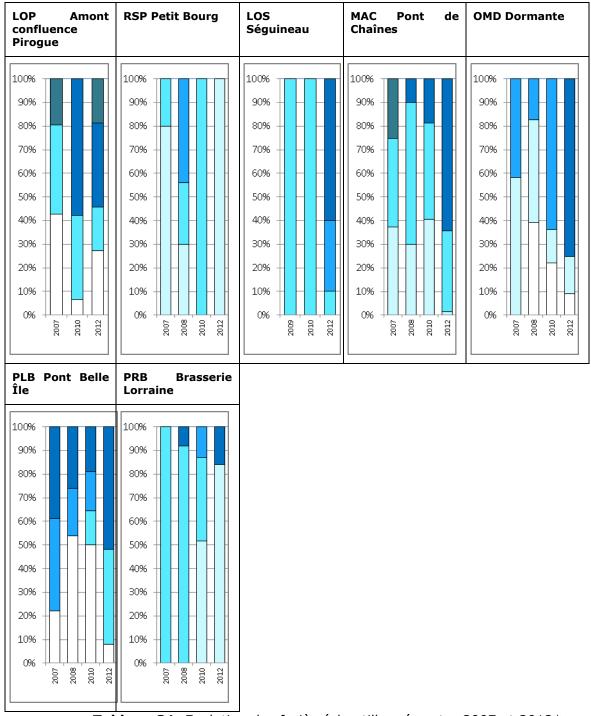


Tableau 31. Evolution des faciès échantillonnés entre 2007 et 2012*.

Rapport Final Page 71/216

^{*}Hors données 2011 non disponibles.

3.4.3. Richesse et composition spécifique sur l'ensemble des stations

La richesse totale pour l'année 2012, en espèces de crustacés et poissons, oscille entre 5 et 8 espèces pour les sites de référence et entre 4 et 13 espèces sur le réseau de surveillance (Figure 11).

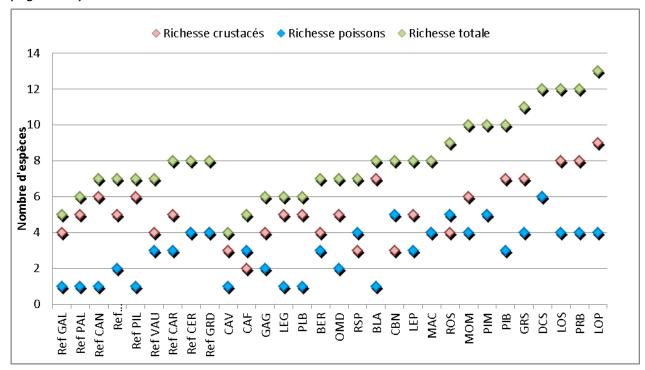


Figure 12. Richesse en espèces des stations de référence - Carême 2012

La plus forte richesse totale concerne la station Amont confluence Pirogue avec 13 espèces. La plus faible richesse totale se retrouve sur la station Case Navire AEP Vivé Capot avec seulement 4 espèces présentes.

L'examen séparé des richesses de poissons et de crustacés révèle que la plus forte richesse (9 espèces) en crustacés est retrouvée à la station Lorrain Amont Confluence Pirogue, alors que la plus faible richesse (2 espèces) concerne la station Fond Baise sur la rivière Case Navire. Quant aux poissons, moins diversifiés que les crustacés, ils atteignent la richesse maximale (6 espèces) à la station Pont Séraphin sur la rivière Deux Courants et la richesse minimale (1 espèce) aux stations Palourde, Gommier, Beauregard et Tunnel Didier sur le réseau de référence et aux stations AEP Vivé Capot sur la rivière Case Navire, à Gué Désirade et Pont Belle île sur la Lézarde et enfin au Pont de L'Alma sur la rivière Blanche.

Sur l'ensemble de la période d'étude des sites de référence (2007-2012 au rythme d'une campagne annuelle en carême), les données de richesse ont été moyennées et sont présentées sur la figure 12.

Rapport Final Page 72/216

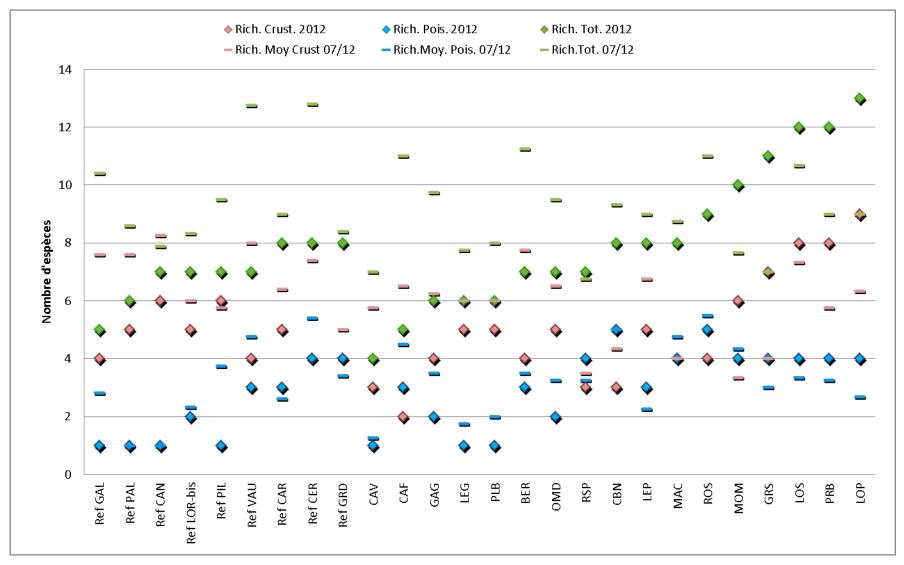


Figure 13. Richesses observées en 2012 et richesses moyennes sur la période 2007-2012 (26 stations)

L'ensemble des stations présentent des richesses totales moyennes relativement variables, comprises entre 6,8 et 12,8 espèces.

La richesse en crustacés en 2012 est de manière générale, inférieure à la moyenne des années précédentes à l'exception des stations Seguineau et Amont Confluence Pirogue sur la rivière Lorrain, Pont de Montgérald sur la rivière Monsieur, Brasserie Lorraine sur la Lézarde et enfin Beauregard sur la rivière Pilote, dont les richesses en crustacés ont augmenté.

La richesse piscicole a en revanche diminué de manière généralisée, seule les stations Carbet Source Pierrot et Grand rivière Trou Diablesse ont vu leur richesse augmenter sur les stations du réseau de référence. En ce qui concerne le réseau de surveillance, les stations Lorrain Séguineau, Amont confluence Pirogue, Stade Grand Rivière, Coulisses Petit Bourg et Petite Rivière Brasserie Lorraine sont les seules à avoir vu leur richesse piscicole augmenter. La richesse en espèces piscicoles n'as pas évolué sur les stations Bourg Schoelcher et Tunnel Didier sur la rivière Case Navire ainsi que pour la station Palourde pour la rivière Lézarde.

Dans l'ensemble, la richesse totale a plutôt diminué. Dans le même sens, la richesse minimale a diminué de quatre unités par rapport aux années précédentes, passant de 8 taxons en 2011 à 4 taxons en 2012. La richesse maximale a, quant à elle, diminué de 16 taxons en 2011 à 13 taxons en 2012. C'est la station Amont Confluence Pirogue sur la rivière Lorrain qui possède la plus forte diversité taxonomique des stations du suivi (13 taxa). Les stations, Trou Diablesse pour Grand Rivière et Coulisses Petit Bourg, montrent une tendance évolutive constante et les stations Pont de Montgérald pour la rivière Monsieur, Stade de Grand rivière, Seguineau et Amont confluence Pirogue pour la rivière Lorrain et enfin Brasserie Lorraine pour la Lézarde ont vu une augmentation de leur diversité spécifique totale. L'ensemble des autres stations est déficitaire en 2012.

L'analyse conjointe de la richesse et de la composition spécifique permet une analyse plus fine, synthétisée dans le tableau 31.

Sur l'ensemble des inventaires de 2012, 3 espèces ont été capturées sur l'ensemble des stations. Il s'agit de 2 espèces de crustacés (*M. heterochirus* et *Micratya poeyi*) et d'une espèce de poisson (*Sicydium sp.*). *Atya scabra* et *Macrobrachium faustinum* ont été capturées sur presque la totalité des stations. Dans une moindre mesure, le crustacé *Xyphocaris elongata* est également relativement répandu. *M. crenulatum* a été capturée seulement sur 6 stations sur l'ensemble des réseaux alors qu'en 2011, cette espèce avait été capturée sur 8 des 9 stations du seul réseau de référence.

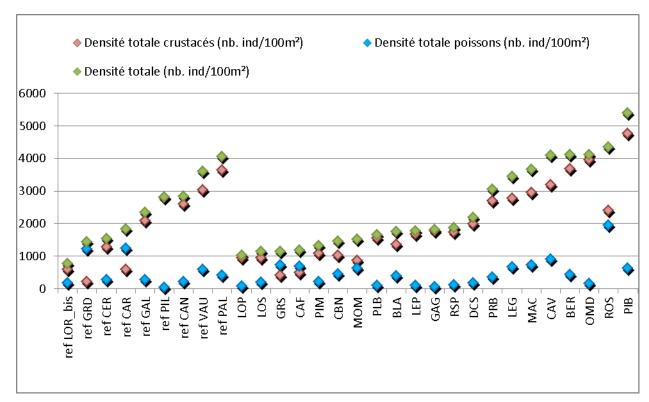
Parmi les espèces les moins fréquemment capturées, les crustacés *Jonga serrei* ainsi que *Potimirim potimirim* et les poissons *Ctenogobius pseudofasciatus*, *Oreochromis mossambicus, Mugil curema, Centropomus ensiferus* et *undecimalis* n'ont été capturés que sur une à deux stations du suivi.



RAPPORT FINAL Page 74/216

Tableau 32. Composition en espèces de poissons et macrocrustacés des réseaux de référence, surveillance, contrôle opérationnel et enquête.

Groupe	Famille	Espèce	ref CAN	ref CAR	ref CER	ref GAL	ref GRD	ref LOR_bis	ref PAL	ref PIL	ref VAU	PRB	SDG	PIM	BLA	МОМ	ros	PIB	BER	CAF	CAV	CBN	GAG	GRS	LEG	LEP	ГОР	MAC	ОМО	PLB	ROS	RSP
	Astacidea	Cherax Quadricarenatus										8																				
		Atya innocous	99	8		177	5			55	40				44		12							5	9		4	6	100	8		
		Atya scabra		4	14	669		3	136	120		20	10	6	34		20	102	1449		1368			4	429	2	28	3		116	10	
	Atyidae	Atya sp.	366	140		159	9	4	80						59			15		129	56			3	471		108	12		6	190	42
	Atyluae	Micratya poeyi	210	34	382		63	172	1122	165	544	312	42	180	391	2	169	1133				22	78	74	72	36	172		984	320		
		Jonga serrei										63	3																			
		Potimirim potimirim					1																	6								
Crustacés		Macrobrachium acanthurus										25	127			24		28														222
Ciustaces		Macrobrachium carcinus						1								2	3	2						1			18					
	Palaemonidae	Macrobrachium crenulatum	18		2			2									23							13			2					
	raiaemonidae	Macrobrachium faustinum	33			18			48		68	467	332	49	4	54	18	178	48		20	32	60		279	230	32	24	124	42	15	18
		Macrobrachium heterochirus		54	170	36	13	17	38	135		1		22	76	3	87	20	24	21	80		54	84		10	26		12		15	
		Macrobrachium sp.	12	6	16		27	10		80	280	445	163	268	59	332	65	688	294	60	136	20	594	31		354	2	1320	520	30	840	546
	Pseudothelphusidae	Guinotia dentata	9							20					1												2					6
	Xiphocarididae	Xiphocaris elongata	582	4					34	680	520	10	320	19	14	19	72	216	171			352	60		159	38	170	51	160	228	10	
	Anguillidae	Anguilla rostrata			4		2						5											1								
	Mugilidae	Agonostomus monticola		2	26		7	41			4			1		46	4			15		4		22			26	3			15	
	wagiiidae	Mugil Curema											6																			
		Poecilia sp.										6	6						3													6
	Cichlidae	Oreochromis mossanbicus										2																				6
Poissons	Gobiesocidae	Gobiesox nudus		4	4		3										2			21		8		7				6			5	
	Eleotridae	Eleotris perniger										4	63	5		53	7	28									4					
	Licotridae	Gobiomorus dormitor									20			4					3			12	12			14	2	9	68		45	48
		Awaous banana												4		11		1								2						
	Gobiidae	Sycidum sp.	114	514	88	135	670	18	166	15	256	160	8	96	197	208	85	281	225	252	468	162	12	353	342	20	18	327	4	44	810	0
		Ctenogobius pseudofasciatus											2																			
	Centropomidae	Centropomus ensiferus																				2										
	'	Centropomus undecimalis																													5	
		stacés (nb. ind/100m²)	2606	595	1270	2076	211	597	3645	2789	3025	2702	1994	1088	1364	872	938	4764	3678	500	3192	1014	1763	417	2782	1675	940	2950	3958	1563	2400	1738
		ssons (nb. ind/100m²)	224	1238	265	265	1218	169	415	33	583	344	180	220	394	636	196	620	428	686	900	448	50	723	671	90	83	719	150	92	1956	125
	Densité totale (nb.	. ind/100m²)	2829	1833	1535	2341	1429	766	4060	2822	3608	3046	2174	1308	1758	1508	1134	5384	4106	1186	4092	1462	1813	1140	3453	1765	1023	3669	4108	1654	4356	1863
	Richesse crustacé		6	5	4	4	4	5	5	6	4	8	6	5	7	6	8	7	4	2	3	3	4	7	5	5	9	4	5	5	4	4
	Richesse poisson	s	1	3	4	1	4	2	1	1	3	4	6	5	1	4	4	3	3	3	1	5	2	4	1	3	4	4	2	1	5	4
	Richesse totale		7	8	8	5	8	7	6	7	7	12	12	10	8	10	12	10	7	5	4	8	6	11	6	8	13	8	7	6	9	8


Figure 14. Répartition spatiale des richesses spécifiques totales, carcinofaunistiques et piscicoles pour les stations du suivi 2012

RAPPORT FINAL

3.4.4. Densité et biomasse

Les densités sont relativement variables entre les différentes stations de référence en 2012 (Figure 14), s'échelonnant de 766 individus/100m² à 5 384 ind./100m². Comme en 2011, la station Trace des Jésuites présente la densité totale la plus faible bien qu'elle soit plus élevée qu'en 2011 (766 ind./100m² en 2012 contre <500 ind./100m² en 2011) sans pour autant détenir les densités minimales en poissons.

Figure 15. Densités en poissons, crustacés et totale sur les sites des réseaux de suivi DCE 2012.

Cinq stations affichent des densités de poissons inférieures à 100 individus/100m² (Pont RN1, Grand Galion, Amont Confluence Pirogue, Pont Belle Ile et Beauregard). La densité totale de ces stations est fortement influencée par le peuplement de macrocrustacés avec des ratios de densité de crustacés de 11 à 84 fois la densité piscicole. Pour la station Beauregard, la densité de crustacés est assez élevée (>2 700 individus/100m²). Comme en 2010 et en 2011, les stations Trou diablesse et Source Pierrot possèdent des densités piscicoles supérieures à celles des crustacés. Les densités piscicoles sont d'ailleurs maximales à la station Source Pierrot (>1 200 individus/100m²). En 2012 seulement, et, dans une moindre mesure, les stations Stade Grand Rivière et Fond Baise présentent également la même tendance à la dominance piscicole pour la densité de peuplement.

Depuis 2005, les stations du réseau de référence présentent des tendances évolutives similaires en termes de densités. La figure 15 présente cette évolution sur les dernières années de suivi, de 2009 à 2012, pour des raisons de lisibilité. A noter que de 2005 à 2008 la densité était en augmentation, tandis qu'elle diminuait en 2009 pour augmenter à nouveau en 2010, de manière plus ou moins nette. Une tendance à la baisse des densités était globalement observée pour l'année 2011, à l'exception des stations Pont RD5 La Broue et

Rapport Final Page 77/216

Beauregard. Cette diminution de la densité totale en 2011 est probablement imputable aux conditions hydrologiques au moment des pêches, le carême 2011 ayant été particulièrement humide. En 2012 et de manière générale, la densité totale augmente à l'exception des stations Tunnel Didier pour la rivière Case Navire et de la station Palourde sur la Lézarde.

Les densités sont élevées en 2012 et leur répartition géographique est homogène. (Figure 18).

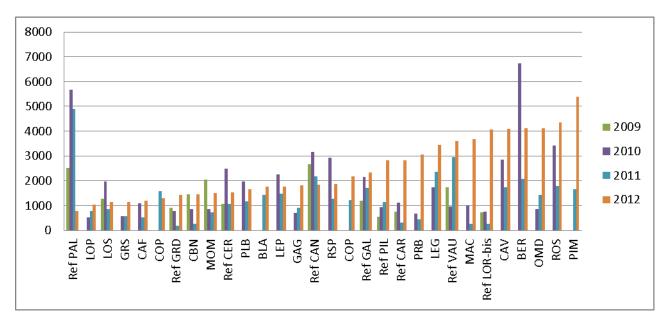


Figure 16. Evolution des densités sur les stations DCE entre 2009 et 2012.

La biomasse totale moyenne dans les cours d'eau de Martinique est de 3 955 g/100m². Elle est aussi en hausse par rapport à 2011.

Les stations Coulisse Petit Bourg, Case Navire AEP Vivé Capot et Roxelane Saint Pierre ont une biomasse totale supérieure à 8 000 g/100m². Sur la station Roxelane Saint Pierre, cette dernière atteint 13 213,33 g/100m² (Figure 16).

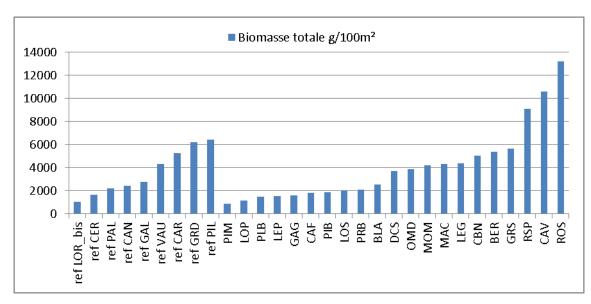


Figure 17. Biomasse totale en 2012 sur les stations du réseau DCE

Rapport Final Page 78/216

Ces fortes biomasses totales peuvent s'expliquer par la présence de gros individus capturés dans les espèces *Oreochromis mossambicus* et *Guinotia dentata* sur Coulisse Petit Bourg, et de *Centropomus undecimalis*, avec de nombreux individus de grande taille de *Gobiomorus dormitor*, sur la station Roxelane Saint Pierre. Ceci est confirmé par l'examen des biomasses par groupes sur ces stations (Figure 17). Seule la station Pont Madeleine sur la rivière Pilote possède une biomasse totale inférieure à 1 000 g/100m².

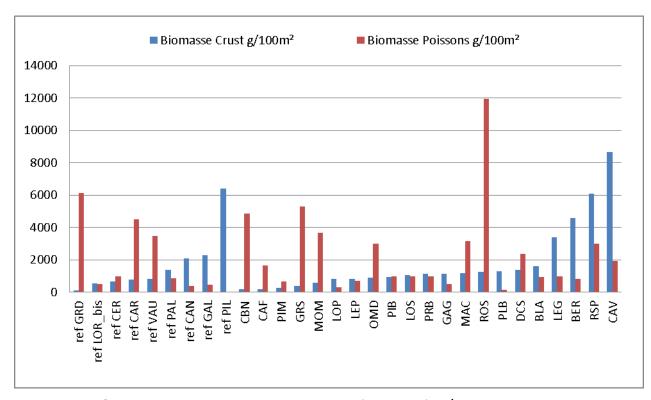


Figure 18. Biomasses par groupes sur les sites du réseau DCE 2012.

Rapport Final Page 79/216

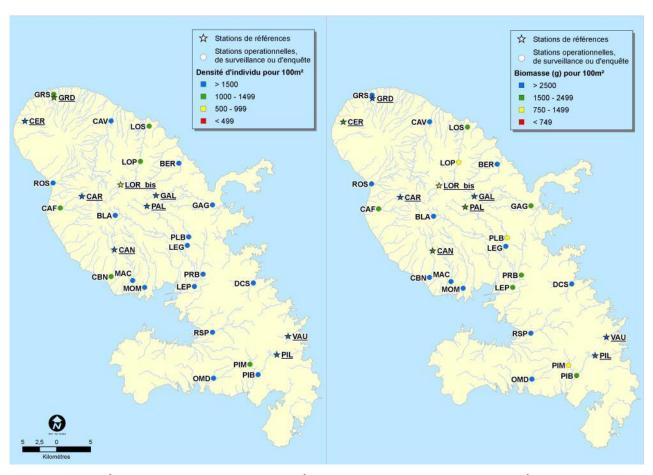
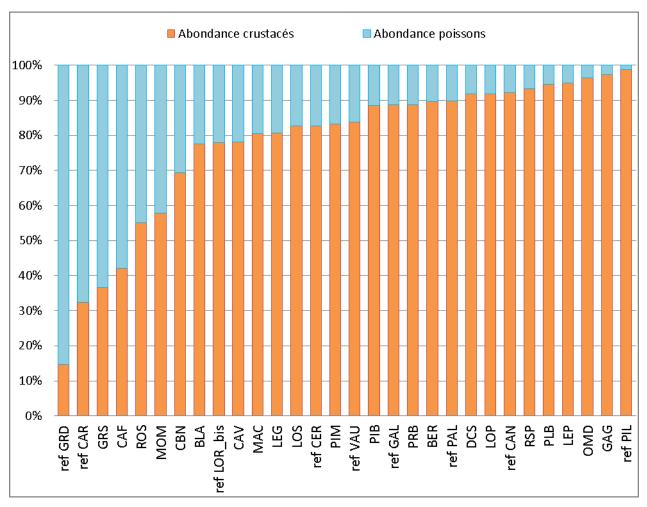


Figure 19. Répartition spatiale des densités et biomasses sur les sites du réseau DCE 2012.

3.4.5. Dominance crustacés/poissons

A l'instar des résultats obtenus lors des deux précédentes années, en 2012 les stations présentant les dominances les plus marquées par les espèces piscicoles sont la station de surveillance Stade Grand Rivière ainsi que les stations de référence Carbet Source Pierrot et Grand Rivière Trou Diablesse, dont les espèces piscicoles représentent respectivement 63,4 %, 67,5 % et 85,3 % de l'abondance totale (Figure 19). Il s'agit de stations localisées dans le nord et le nord-Caraïbe (Figure 20).


Les stations Carbet Fond Baise, Roxelane Saint Pierre et Monsieur Pont de Montgérald possèdent des répartitions en abondance relativement équilibrées entre les crustacés et les poissons avec une abondance piscicole comprise entre 42,2 % et 57,8 % de l'abondance totale.

Enfin les autres stations témoignent d'une importante dominance par les macrocrustacés avec un maximum pour la station Beauregard, sur laquelle les crustacés représentent 98,8 % de l'abondance totale.

La majorité des stations du réseau de référence présentent donc une nette dominance des crustacés (7 stations sur 9).

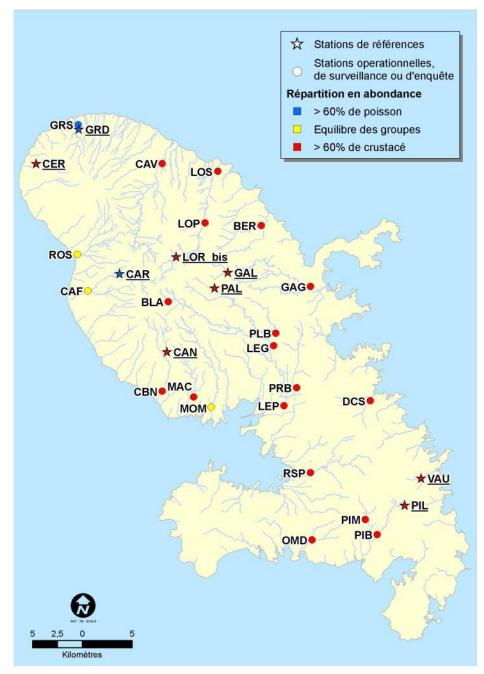

Rapport Final Page 80/216

Figure 20. Abondances relatives en poissons et crustacés pour les stations du suivi DCE – Année 2012

Rapport Final Page 81/216

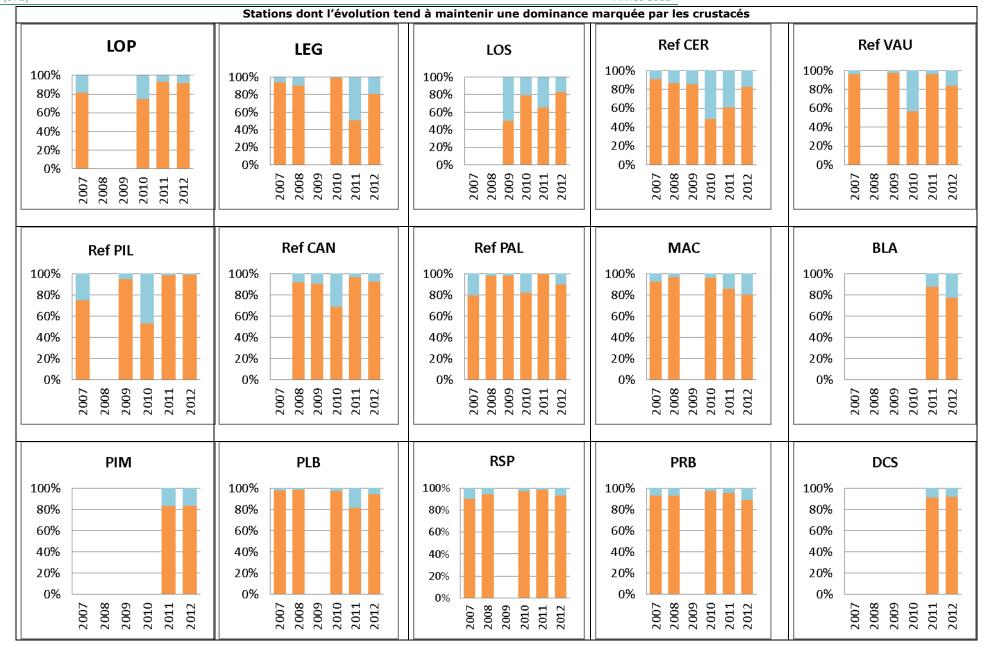


Figure 21. Répartition spatiale des dominances de crustacés et de poissons sur les stations du réseau DCE en 2012.

L'examen des chroniques des captures depuis 2007 (Figure 21) permet de classer les stations des réseaux de référence, de surveillance, du contrôle opérationnel et d'enquête en trois catégories du point de vue des dominances des deux groupes.

Rapport Final Page 82/216

85% 80% 75%

2007 2008 2009 2010 2011 2012

Rapport Final Page 84/216

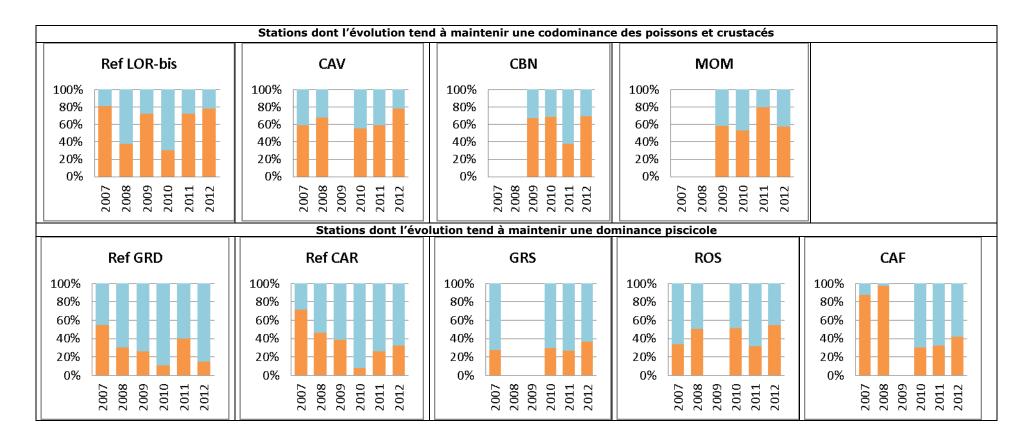


Figure 22. Abondances relatives entre poissons et crustacés pour les sites de références – Années 2007 à 2012.

Rapport Final Page 85/216

D'une manière générale, les parts respectives des poissons et des crustacés dans les captures ont tendance à rester comparables de 2007 à 2012.

Dans l'ensemble, la plupart des stations montrent une forte dominance des crustacés. C'est notamment le cas pour 5 des 9 stations de référence. Les crustacés sont plus présents dans les parties amont des cours d'eau du suivi 2012.

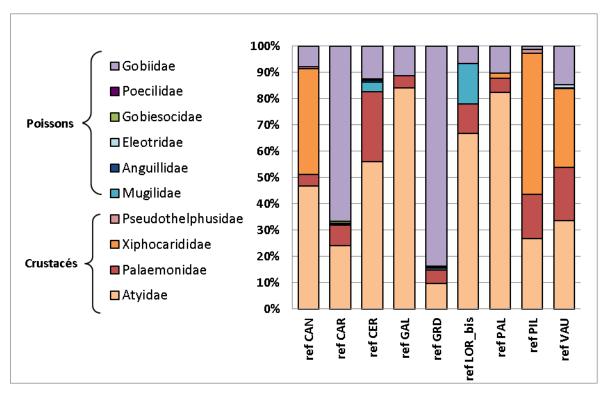
Les stations de référence du sud-Atlantique présentent, quant à elles, une forte tendance à la dominance des crustacés alors que les pentes des cours d'eau concernés sont relativement faibles.

Les stations AEP Vivé Capot, Case Navire Bourg Schoelcher, Galion Gommier, Monsieur Pont de Mongérald et enfin Lorrain Trace des Jésuites présentent des peuplements composés de manière relativement équilibrée par des poissons et des crustacés. Les deux stations de référence (Trace des Jésuites et Gommier) présentent malgré tout de fortes variations au cours des chroniques.

3.4.6. Répartition par familles sur les stations de référence

La répartition des abondances relatives par famille de poissons et crustacés permet d'affiner la composition des peuplements en place sur les stations de référence. Les données obtenues en 2012 sont également comparées à celles obtenues les années précédentes (Figures 22 et Tableau 32).

La plupart des stations de référence possèdent une forte proportion de crustacés Atyidae, à l'exception des stations Grand Rivière Trou Diablesse, Carbet Source Pierrot et Pilote Beauregard. Sur les stations Carbet Source Pierrot et Grand Rivière Trou Diablesse, l'abondance relative en Atyidae est minimisée par une forte abondance relative de poissons Gobiidae. Les Atyidae et les Gobiidae sont présents sur toutes les stations, il en est de même pour les Palaemonidae, bien que ces derniers soient présents en moindres proportions.


Les stations les plus diversifiées sont les stations, Vauclin RD5 la Broue, Céron Amont Habitation et Grand Rivière Trou Diablesse avec 6 familles répertoriées au total (2 familles de crustacés et 4 de poissons pour Trou Diablesse et Céron ainsi que 3 familles de crustacés et 3 de poissons pour Beauregard).

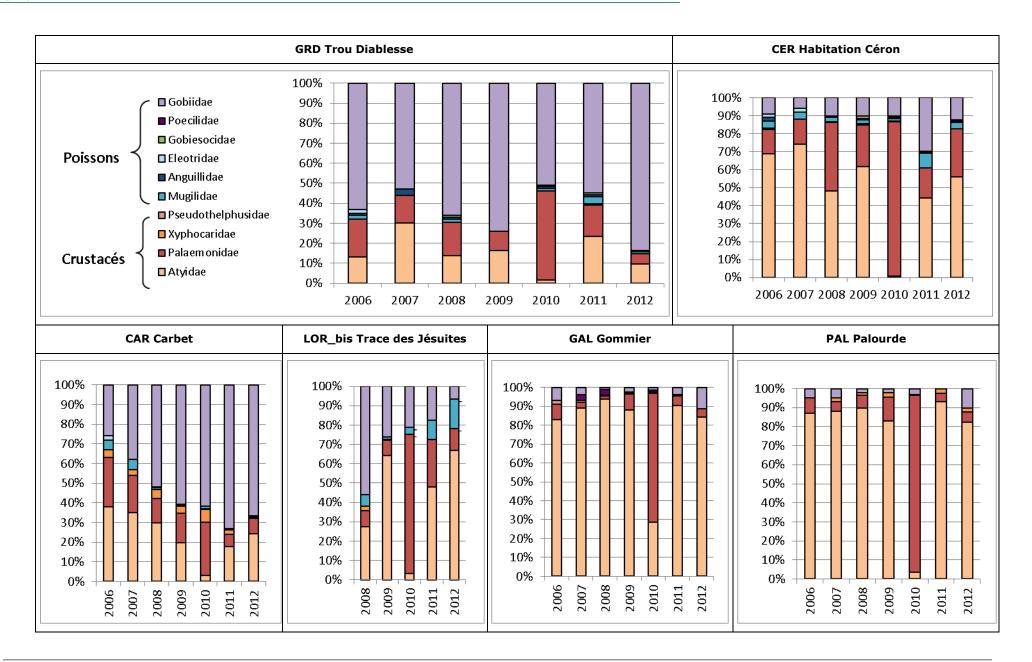
La station la moins diversifiée est la station Galion Gommier qui ne présente que deux familles de crustacés et une seule espèce de poissons, les Gobiidae, présents sur toutes les stations.

Depuis 2006, trois stations se démarquent par la forte abondance de la famille des Xiphocaridae : il s'agit des deux stations de la zone sud (Pont RD5 LA Broue et Beauregard) et la station Tunnel Didier.

RAPPORT FINAL Page 86/216

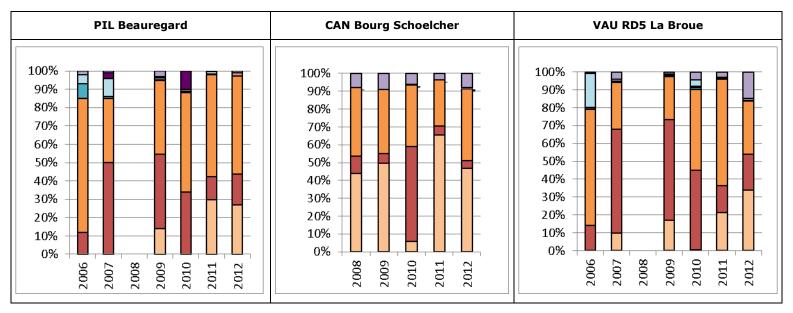
Figure 23. Répartition en abondance relative des familles de crustacés et de poissons sur les sites de référence – Année 2012.

L'analyse de l'évolution interannuelle de la composition en familles aux différentes stations permet de préciser les observations faites dans le chapitre précédent (Tableau 31).


D'une manière générale, les profils de composition sont relativement similaires d'une année sur l'autre pour chaque station. A noter cependant, pour presque l'ensemble des stations, la forte dominance décelée en 2010 de la famille des Palaemonidae.

De la même manière qu'en 2012, depuis 2006, lorsque les poissons dominent, les Gobiidae sont les plus représentés. Lorsque ce sont les crustacés qui sont majoritaires, leur dominance se décline à travers les différentes familles avec un net recrutement parmi les Atyidae et les Palaemonidae ainsi que les Xiphocaridae dans une moindre mesure et seulement sur les stations Vauclin RD5 la Broue, Pilote Beauregard et Carbet Source Pierrot.

La forte dominance des Palaemonidae relevée en 2010 n'a pas été de nouveau observée en 2011 puis 2012, ainsi, les répartitions en abondance relative ont retrouvé une tendance comparable à celle des autres années. Pendant le carême 2010, particulièrement sec, la famille relativement ubiquiste des Palaemonidae, a vu ses effectifs se maintenir mieux que les autres familles dans un milieu marqué par la pénurie d'eau.

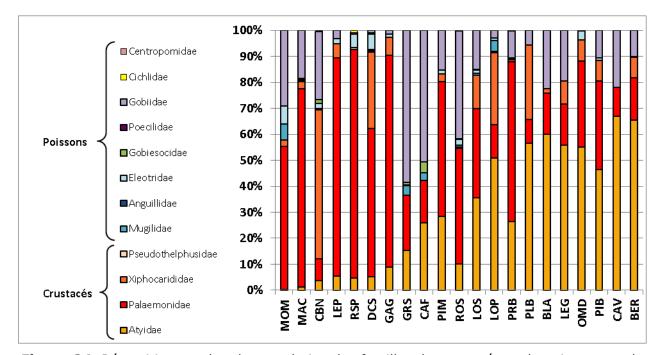


Rapport Final Page 87/216

RAPPORT FINAL

Tableau 33. Evolution interannuelle de la composition de la carcinofaune et de la piscifaune en abondance relative sur les sites de référence.

Rapport Final Page 89/216

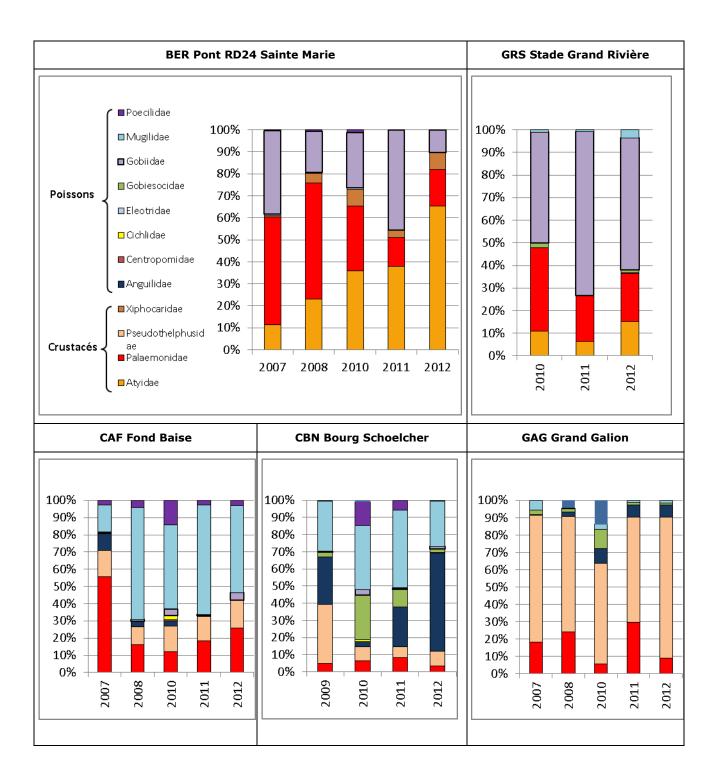

3.4.7. Répartition par familles sur les stations de surveillance

La répartition des abondances relatives en 2012 est présentée figure 24.

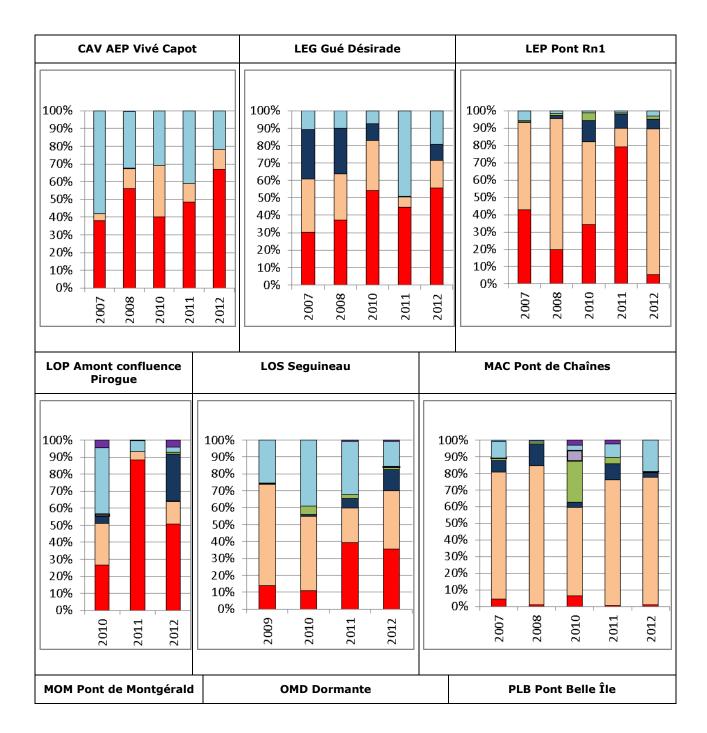
La majorité des stations présentent une forte proportion de crustacés Atyidae et Palaemonidae à l'exception des stations Stade Grand Rivière, Carbet Fond baise et Lorrain Seguineau, affichant des abondances plus fortes en espèces piscicoles. Les Palaemonidae et les Atyidae sont présent sur toutes les stations.

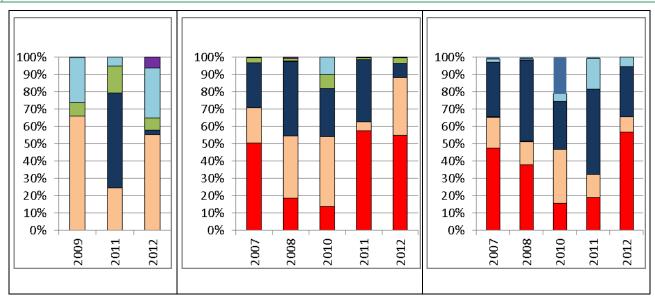
Les stations les plus diversifiées sont les stations, Deux Courants Séraphin, Case Navire Bourg Schoelcher et Roxelane Saint Pierre avec 8 familles répertoriées au total (3 familles de crustacés et 5 de poissons).

La station la moins diversifiée est la station AEP Vivé Capot qui ne présente que deux familles de crustacés et une seule espèce de poissons, les Gobiidae, présents sur toutes les stations.


Figure 24. Répartition en abondance relative des familles de crustacés et de poissons sur les sites de surveillance – Année 2012.

L'analyse de l'évolution interannuelle de la composition en familles aux différentes stations permet de préciser les observations faites dans le chapitre précédent (Tableau 25).


D'une manière générale, les profils de composition sont relativement similaires d'une année sur l'autre pour chaque station. La forte dominance décelée en 2010 de la famille des Palaemonidae n'est pas mise en évidence sur les sites de surveillance, de contrôle opérationnel et d'enquête.


RAPPORT FINAL Page 90/216

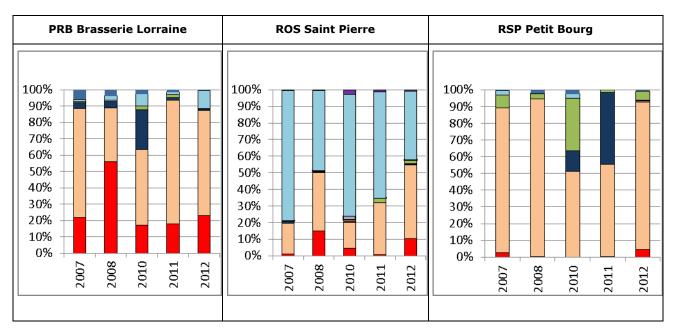


Tableau 34. Evolution interannuelle de la composition de la carcinofaune et de la piscifaune en abondance relative sur les sites de surveillance.

3.4.8. Potentiel reproducteur pour l'ensemble des stations

Le potentiel reproducteur correspond à la quantité de femelles ovigères sur l'effectif total de la population de crustacés. Ce potentiel est indicateur du rôle joué dans le recrutement par la portion concernée de la rivière et il s'avère donc intéressant de suivre son évolution. Le potentiel reproducteur calculé sur la base des données de 2012 est présenté dans la figure 23.

Le potentiel reproducteur le plus important est retrouvé à la station Amont Habitation Céron (43,15 %) sur les stations de référence et sur la station Stade Grand Rivière (29,86 %) pour les sites du RCS.

Les stations du réseau de référence présentent en majorité des potentiels reproducteurs élevés à l'exception des stations Pilote Beauregard, Galion Gommier et Vauclin RD5 la Broue, dont les potentiels reproducteurs sont inférieurs 3 %.

Les stations du RCS Case Navire Bourg Schoelcher, Oman Dormante et enfin Coulisse Petit Bourg ont toutes les trois présentées un potentiel reproducteur nul lors du carème 2012, et ce, malgré des effectifs de capture respectables à élevés. En revanche, les stations Roxelane Saint Pierre, Seguineau et Amont Confluence Pirogue pour la rivière Lorrain, AEP Vivé Capot et Stade Grand Rivière possèdent un potentiel reproducteur relativement élevé compris entre 12,5 % et 29,9 %, comparativement à la moyenne générale du potentiel reproducteur pour 2012 qui est d'environ 10,9 %.

Les crustacées Atyidae et les Xiphocaridae sont en 2012 les crustacés représentant les plus fortes proportions d'individus gravides (Figure 24).

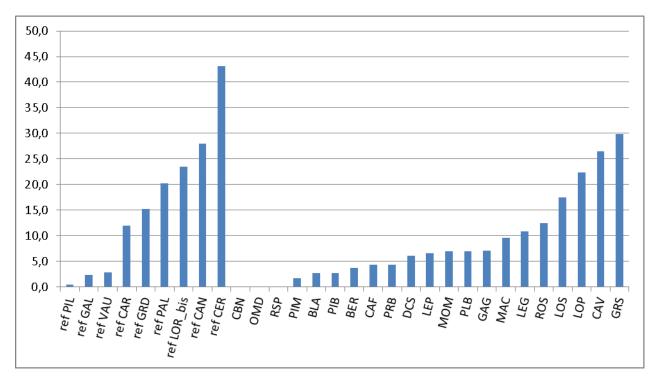
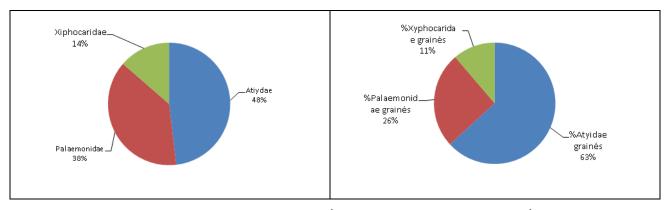



Figure 25. Potentiel reproducteur des crustacés pour les du suivi DCE - Année 2012

Figure 26. Analyse comparative de la représentation des reproducteurs à travers les grandes familles de crustacés.

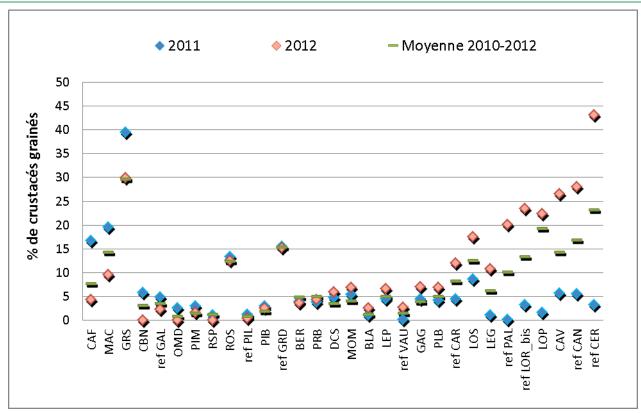


Figure 27. Evolution du pourcentage de crustacés grainés entre 2011 et 2012

L'analyse interannuelle de l'évolution du pourcentage de crustacés grainés entre les carêmes est présentée pour les années 2011 et 2012. Le pourcentage de crustacés grainés des années précédentes n'est pas présenté pour plus de lisibilité (Figure 25). L'analyse indique une faible variation du pourcentage de crustacés portant des œufs pour 17 stations.

En revanche, le taux de femelles grainées a fortement baissé sur les stations Case Navire Fond Baise et Bourg Schoelcher, Madame Pont de Chaînes et enfin Stade Grand Rivière. Ces sites correspondent à l'exception de la station Stade Grand Rivière aux stations de l'agglomération Foyalaise et subissent certainement des pressions anthropiques.

Le taux de femelles grainées a augmenté fortement en 2012 pour les stations de référence Carbet Source Pierrot, Palourde Lézarde, Lorrain Trace des Jésuites, Amont Habitation Céron et enfin Tunnel Didier. En ce qui concerne les stations du RCS, les stations Lorrain Amont confluence Pirogue et Seguineau, AEP Vivé Capot, et Lézarde Gué Désirade ont suivi la même tendance évolutive positive en 2012.

Les stations possédant un potentiel reproducteur élevé en 2012 sont principalement réparties dans le nord de l'île (Figure 26).

RAPPORT FINAL Page 95/216

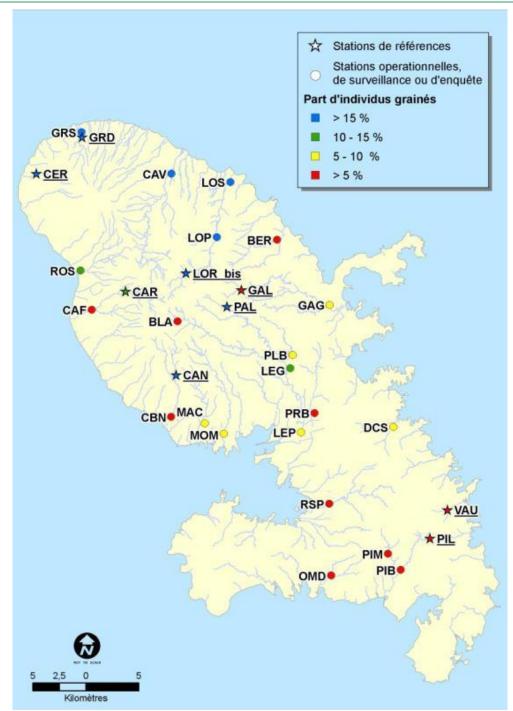


Figure 28. Répartition des individus grainés sur les stations DCE 2012 en Martinique.

3.4.9. Répartition en classes de tailles sur les sites du suivi

L'analyse de la structure en classes de tailles n'est pas présentée car elle ne semble pas très pertinente dans un contexte tropical.

Les cycles de reproduction des espèces aquatiques étant principalement gouvernés par les conditions hydrologiques, une interprétation des histogrammes de distribution dans le sens d'un éventuel dysfonctionnement des populations apparaît relativement hasardeuse. Ces espèces se reproduisant toute l'année, avec des pics en période d'épisodes pluvieux intenses

et durables, l'utilisation de la notion de cohorte est ici abusive. Les saisons étant par ailleurs relativement peu marquées, avec des étiages sévères en hiver et de forts coups d'eau en carême, la réponse des populations à ces « stress » environnementaux ne peut être prédite. Par conséquent, la définition d'un profil de distribution « moyen » caractéristique d'un bon fonctionnement de la population ne peut être appliquée.

3.4.1. Synthèse générale

Ci-après un tableau récapitulatif des résultats obtenus pour le compartiment piscicole et la carcinofaune associée, en 2012, pour les différentes métriques mesurées.

Réseau de Référence:

Les stations du nord-est de la Martinique, **Carbet Source Pierrot** et **Amont Habitation Céron** sont relativement semblables en termes de peuplement. En 2012, elles présentent le même profil avec des abondances, densités et richesses voisines. En revanche, la répartition de l'abondance diffère. La station Carbet Source Pierrot possède une répartition légèrement en faveur des poissons alors que la station Céron Amont habitation est dominée par les crustacés. La station Carbet présente une biomasse plus importante que la station Céron. En revanche, le potentiel reproducteur sur cette dernière est le plus important du suivi DCE toutes stations confondues (43,5 %). Depuis 2011, sur ces deux stations, les descripteurs sont en évolution positive pour la densité, la biomasse et l'abondance ainsi que pour le potentiel reproducteur.

La station **Trace des Jésuites** présente les plus faibles abondances, densités et biomasses. Néanmoins, ces paramètres, ainsi que le potentiel reproducteur, sont tous en augmentation en 2012. La richesse spécifique, quant à elle, reste comparable à celle relevée en 2011.

Galion Gommier présente des similarités avec la station **Grand Galion** du RCS. Une abondance, une densité et une biomasse faible à modérée et une faible richesse spécifique. La densité, l'abondance, la biomasse et le potentiel reproducteur sont en revanche en augmentation depuis 2011. Néanmoins, la richesse a diminué en 2012.

La station **Palourde Lézarde** présente la plus forte densité des stations du réseau de référence. La richesse spécifique reste faible et l'ensemble des paramètres est en baisse en 2012.

La station **Pilote Beauregard** possède la plus importante abondance et densité en crustacés de toutes les stations du réseau de référence en 2012. En regard de l'année 2011, la densité de peuplement totale mais également la proportion relative de crustacés, sont en augmentation. La richesse spécifique et le potentiel de reproduction sont en légère baisse par rapport à l'année 2011.

La station **Trou Diablesse Grand Rivière** présente une proportion majoritaire de poissons qui est en augmentation depuis 2011. L'abondance et la densité totale sont en augmentation, de même que le potentiel reproducteur. La richesse spécifique est moyenne et reste stable en 2012.

La station sud-atlantique **Vauclin RD5 La Broue** voit en 2012 sa densité de peuplement augmenter légèrement. La répartition du peuplement entre crustacés et poissons reste également relativement équilibrée et comparable à ce qu'elle était en 2011. La diversité spécifique diminue de manière très préoccupante (perte de 8 espèces). Le potentiel reproducteur, au demeurant faible, croît légèrement en 2012.

Enfin, la station **Tunnel Didier sur la rivière Case navire**, présente entre 2011 et 2012 une stabilité en termes de répartition entre poissons et crustacés ainsi que sur la richesse spécifique. En outre, le potentiel reproducteur et la densité de peuplement sont en augmentation en 2012.

RAPPORT FINAL Page 97/216

Tableau 35. Synthèse générale de l'expertise piscicole

	1	1	0		1					1			
Code DEAT	Name at ation	Biomasse	Der	nsité	Répa	rtition Crust./				esse		Potentiel de	Reproduction
Code DEAL	Nom station	2012	2042	I .	Biomasse		dance	0	2012		Dyn.	2042	-
GRD	Trou de la Diablesse	©	2012	Dyn.	Р	2012 P	Dyn. Crust.	Crustacé (2)	Poisson	Totale	→	2012	Dyn.
	+			7	-		_	_	<u> </u>	<u> </u>			7
GRS	Stade Grand Rivière	© •	<u> </u>	7	P	P	7	<u> </u>	<u> </u>	© •	71	© 0	7
CER	Habitation Céron	©	<u>©</u>	7	Р	С	→	8	©	<u> </u>	<u> </u>	©	71
CAV	AEP Vivé Capot	© •	©	7	C	С	7	8	8	8	→	<u>©</u>	7
LOR bis	Lorrain trace des Jésuites	©	@	71	P/C	С	71	8	©	⊜	→	©	71
LOP	Amont confluent Pirogue	<u> </u>	<u> </u>	71	P/C	С	→	(4)	©	©	7	<u> </u>	7
BER	Pont RD24 Sainte-Marie	©	©	71	С	С	71	8	⊜	⊜	7	8	7
ROS	St Pierre (ancien pont)	©	©	71	Р	P/C	71	8	©	©	→	<u></u>	→
GAG	Grand Galion	⊜	©	7	С	С	→	8	⊜	8	7	⊜	7
GAL	Galion	©	©	71	С	С	→	8	8	8	7	⊜	7
CAR	Carbet	©	©	71	Р	P	4	8	(2)	⊜	→	(2)	7
CAF	Fond Baise	(2)	(2)	→	P	P	7	8	=	8	4	8	→
PAL	Palourde	(2)	©	2	С	С	4	8	8	8	4	©	2
PLB	Pont Belle Ile	@	©	→	С	С	7	8	8	8	7	@	7
LEG	Gué de la Désirade	©	©	71	С	С	7	8	8	8	→	@	7
LEP	Pont RN1	(2)	©	→	С	С	→	8	<u> </u>	(2)	→	@	7
CBN	Case Navire (Bourg Schoelcher)	©	(2)	71	Р	С	→	8	©	(2)	→	8	7
CAN	Case navire bras Duclot	(2)	©	71	С	С	→	(2)	8	(2)	→	©	71
MAC	Pont de Chaîne	©	©	71	Р	С	7	8	©	⊜	→	(2)	7
RSP	Petit Bourg	©	©	71	С	С	→	8	(4)	⊜	→	8	4
VAU	Vauclin	©	©	→	Р	С	→	8	<u> </u>	<u> </u>	<u> </u>	8	7
PIL	Pilote	©	©	71	С	С	71	<u> </u>	8	<u> </u>	<u> </u>	<u> </u>	<u>u</u>
OMD	Dormante	<u>©</u>	<u> </u>	7	Р	С	→	8	<u> </u>	<u> </u>	→	8	→
PRB	Brasserie Lorraine	@	<u> </u>	71	c	C	→	⊕	©	©	7	8	→
DCS	Pont Séraphin	<u> </u>	<u> </u>	7	P	C	→	(2)	<u> </u>	<u> </u>	71	<u> </u>	→
PIM	La Mauny	<u> </u>	<u> </u>	→	P	С	→	8	<u> </u>	(a)	3	8	→
BLA	pont de l'Alma	<u> </u>	©	→	C	С	<u> </u>		8	<u> </u>	→	8	→
MOM	Pont de Montgérald	<u> </u>	©	7	P	С	2		<u> </u>	<u> </u>	<u>y</u>	<u> </u>	→
LOS	Séguineau	<u> </u>	<u> </u>	71	P/C	C	71		<u> </u>	<u> </u>	→	<u>©</u>	7
PIB	Amont Bourg	<u> </u>	<u>©</u>	7	P/C	C	2	<u> </u>	<u></u>	<u> </u>	<u> </u>	8	<i>→</i>
110	Amont boding		9	* *	1/5		-			D	-	V	7

Réseau de contrôle de surveillance et d'enquête:

Pont Séraphin sur la rivière Lorrain est la seule station du RCS située dans la partie sud-Atlantique de l'île. En 2011, les caractéristiques de la station étaient dans une bonne moyenne des stations martiniquaises. La situation s'améliore en 2012 avec une biomasse plus élevée et une densité en augmentation. Cette station fait partie des 4 stations qui voient évoluer leur richesse spécifique positivement en 2012. En revanche, le potentiel reproducteur reste moyen sur cette station, dans des proportions comparables à l'année 2011.

Pont Madeleine et **Amont bourg grande rivière pilote** sont situées sur le même cours d'eau : Rivière Pilote. Les caractéristiques de leurs communautés aquatiques sont majoritairement similaires, seule l'abondance diffère d'une station à l'autre. La station la plus amont est peuplée plus densément que la station aval (Amont Bourg). La richesse totale n'a cependant pas évolué depuis 2011 sur ces deux stations.

La station **Dormante** dans le sud-Caraïbe a vu ses densités et biomasse totale augmenter depuis 2011. La répartition entre crustacés et poissons se maintient depuis 2010. La richesse spécifique, marquée par une baisse progressive depuis 2008 se poursuit en 2012 avec une perte de 2 espèces de poissons et 2 espèces de crustacés sur cette période. Bien qu'inquiétante cette baisse reste néanmoins minime. La station doit cependant continuer à être surveillée pour contrôler la poursuite ou non du phénomène. Les crevettes grainées mises en évidence pour la première fois en 2011 n'ont pas été repérées sur cette station en 2012.

La station **Petit Bourg** sur la rivière des Coulisses est située au sud de l'agglomération foyalaise. Sa densité totale, en baisse sur la période 2010-2011 connait une augmentation en 2012. Le faible potentiel de reproduction relevé en 2011 est nul pour 2012. La richesse reste globalement stable depuis le début du suivi avec la perte d'un seul taxon par rapport à 2011 (7 espèces au total).

Les trois stations de l'agglomération foyalaise, **Pont Montgérarld**, **Pont des chaînes** et **Case Navire** présentent toutes en 2012 une augmentation notable de la densité alors que celle-ci était en diminution régulière sur la période 2009-2011. Les trois stations sont également dominées en biomasse par les poissons. Les richesses en crustacés sont plutôt faibles à moyennes tandis que les richesses de poissons sont moyennes à fortes. La diversité semble se stabiliser au fil des années, à l'exception de la station Pont de Montgérald, pour laquelle elle augmente fortement (passage de 5 à 10 espèces entre 2011 et 2012). Le potentiel reproducteur sur ces trois stations a baissé en 2012, malgré le maintien constaté de la densité de peuplement des crustacés.

Les stations entre **Case Navire Bourg Schoelcher** et **Stade grande rivière** – avec **Fond Baise** et **Saint Pierre** montrent une certaine constance et une continuité avec les stations de Fort de France. Les poissons dominent globalement les captures tant en termes d'abondance que de biomasse et ceci de manière stable entre 2010 et 2012 à l'exception de la station Bourg Schoelcher sur laquelle les crustacés dominent en 2012. Les richesses spécifiques les plus élevées en poissons sont retrouvées sur ces stations. Leurs richesses totales sont cependant moyennes du fait du peu d'espèces de crustacés capturése, et les tendances évolutives sont plutôt à la baisse à l'exception de Stade Grand Rivière qui voit sa richesse augmenter en 2012. L'augmentation du potentiel reproducteur mise en évidence en 2011 se poursuit en 2012 sur les stations Stade Grand Rivière et Bourg Schoelcher mais se stabilise sur Fond Baise et Saint Pierre.

La station **AEP Vivé Capot**, présente une hausse significative des biomasses, densité et abondance. La répartition en abondance des poissons et crustacés est stable ainsi que la richesse totale, marquée pourtant par une faible valeur pour la carcinofaune. A noter, une augmentation du potentiel reproducteur en 2012 sur cette station.

Deux stations ont été échantillonnées sur la rivière Lorrain en 2012 : **Amont confluence Pirogue** et **Seguineau**. Elles sont, contrairement à l'année 2011, globalement comparables avec sensiblement de meilleurs résultats sur la station aval (Lorrain Seguineau). Ces deux stations montrent des abondances, densités et biomasses modérées à faibles en 2012. La richesse spécifique, en augmentation en 2012, retrouve un niveau comparable (13 et 12

RAPPORT FINAL Page 99/216

DEAL de la Martinique

(972)

Année 2012

espèces présentes respectivement) avec celui relevé en 2010 alors que l'année 2011 avait vu la richesse diminuer de moitié sur ces stations.

Sur la station de **Pont RD24 St Marie** la densité, l'abondance et la biomasse ont vu leur amplitude presque doubler en 2012. La proportion équilibrée entre crustacés et poissons observée en 2011 a retrouvé un ratio nettement en faveur des crustacés en 2012. La richesse a cependant diminué en 2012 avec la perte d'une espèce.

La Station **Grand Galion** présente des caractéristiques en augmentation depuis 2010. Avec une densité moyenne, la communauté de cette station est dominée par les crustacés tant en termes de biomasse que d'abondance et nombre de taxons. La richesse totale a cependant diminué en 2012. Le potentiel reproducteur sur cette station en 2012 poursuit lentement l'augmentation observée en 2011.

Trois stations ont été échantillonnées sur la rivière Lézarde en 2012 : **Pont RN1**, **Gué Désirade** et **Pont Belle-île**. Les deux stations « extrêmes » (Pont RN1 et Pont Belle-île) présentent des caractéristiques similaires : globalement, leurs abondances sont faibles ainsi que leurs densités et biomasses en 2012 ; leurs potentiels de reproduction sont en augmentation. La station intermédiaire Gué Désirade est nettement différente. La densité et la biomasse y sont élevées et la communauté davantage équilibrée entre poissons et crustacés. La richesse spécifique de la station Gué Désirade est également moins bonne qu'aux stations amont et aval, au niveau des espèces piscicoles notamment. Contrairement à l'année 2011, le potentiel reproducteur retrouve une tendance haussière.

Une seule station, **Pont de l'Alma**, a été échantillonnée en 2012 dans le centre nord de l'île, sur la rivière Blanche. L'abondance et la richesse spécifique relevées sur cette station sont moyennes mais stables. La communauté est essentiellement constituée de crustacés et une seule espèce de poisson y a été rencontrée (Gobiidae *Sicydium sp.*, présents sur toutes les stations du suivi DCE). Le potentiel de reproduction reste lui aussi bas et stable en 2012, en regard des résultats obtenus les autres années.

La station **Brasserie lorraine** présente des biomasses et densités en augmentation en 2012. La station, marquée par une baisse de ses descripteurs en 2011 voit ses derniers augmenter de nouveau cette année. La richesse est en nette augmentation cette année (gain de 5 espèces). Le potentiel reproducteur reste stable.

3.4.2. Physico-chimie sur biote

Stations du réseau de référence :

Tous les sites du réseau de référence à l'exception des stations Pilote Beauregard et Grand Rivière Trou Diablesse (7 stations sur 9 au total) du fait d'un poids insuffisant, ont pu faire l'objet d'analyses sur biotes (1 à 2 échantillons).

Les analyses réalisées (Tableau 34) mettent en évidence une contamination au **Mercure** d'intensité modérée sur **3 stations**, soit une diminution par rapport à l'année 2011 qui comptais 5 sites contaminés. Les stations concernées sont les stations Amont Habitation Céron pour les poissons (*Sicydium sp.*), Case Navire Tunnel Didier pour les poissons et crustacés (*Sicydium sp. et Macrobrachium crenulatum*) et enfin la station Galion Gommier, également contaminée sur les compartiments poissons et crustacés (*Sicydium sp. et Macrobrachium heterochirus*). Les concentrations de mercure mises en évidence sont plus faibles que lors des analyses de 2011.

Aucune contamination en hexachlorobutadiène, en hexachlorobenzène et en chlordécone-5b-hydro n'a été quantifiée sur les 7 sites du réseau de référence analysés. En revanche, il a été possible de quantifier la contamination d'au moins un des 2 groupes faunistiques par le **chlordécone sur les 7 stations** analysées contre 3 seulement en 2011. Néanmoins, et bien que le taux maximal relevé sur la station Galion Gommier soit préoccupant (259 μg/kg de poids frais), il demeure moitié moindre par rapport au taux maximal mis en évidence en 2011 (592 μg/kg de poids frais).

RAPPORT FINAL Page 100/216

DEAL de la Martinique (972)

Tableau 36. Résultats des analyses physico-chimiques réalisées sur le biote dans les stations des réseaux de référence, année 2012.

Rivière	Station	Code sandre	Type DCE	Date de capture Espèce	Poids frais (g)	Matière sèche (%)	Matière grasse (%)	Mercure (μg/kg PF)	Hexachlorobutadi ène (μg/kg PF)	Hexachlorobenzèn e (µg/kg)	Chlordécone (µg/kg)	Chlordécone 5b Hydro (μg/kg)
Anse Céron	Amont prise canal Habitation Céron	08014101	Référence	01/05/2012 Sicydium sp.	1	06 25	3	0,01	< 0,001	< 1	< 10,0	< 10,0
Case Navire (Duclos)	Tunnel Didier	08301101	Référence	17/05/2012 M. crenulatu	m	25,8	5	0,01	< 0,001	< 1	< 10,0	< 10,0
Carbet	Source Pierrot	08320101	Référence	19/05/2012 Sicydium sp.	1	37 24,1	3	< 0,01	< 0,001	< 1	< 10,0	< 10,0
Lézarde	Palourde Lézarde	08501101	Référence	02/05/2012 Sicydium sp.	1-	13 26,9	7	< 0,01	< 0,001	< 1	< 10,0	< 10,0
Blanche	Pont Alma	08511101	Enquête	30/05/2012 Sycidium sp.	2	24,8	8	< 0,01	< 0,001	< 1	< 10,0	< 10,0
Lorrain	Trace des Jésuites	08201101	Référence	28/04/2012 M. heterochi	rus	20,8	2	< 0,01	< 0,001	< 1	11	< 10,0
Lézarde	Palourde Lézarde	08501101	Référence	02/05/2012 M. heterochi	rus	23,7	3	< 0,01	< 0,001	< 1	11	< 10,0
Carbet	Source Pierrot	08320101	Référence	19/05/2012 Sicydium sp.	1	23,6	3	< 0,01	< 0,001	< 1	13	< 10,0
Anse Céron	Amont prise canal Habitation Céron	08014101	Référence	01/05/2012 M. heterochi	us	25,3	2	< 0,01	< 0,001	< 1	14	< 10,0
Vauclin	Pont D5 - La Broue	08703101	Référence	03/05/2012 M. heterochi	rus	26 20,5	2	< 0,01	< 0,001	< 1	17	< 10,0
Carbet	Source Pierrot	08320101	Référence	19/05/2012 M. heterochi	rus	71 24,2	2	< 0,01	< 0,001	< 1	25	< 10,0
Blanche	Pont Alma	08511101	Enquête	30/05/2012 M. heterochi	rus 2	17 22,9	8	< 0,01	< 0,001	< 1	25	< 10,0
Galion	Gommier	08221101	Référence	02/05/2012 Sicydium sp.		20,3	5	0,02	< 0,001	< 1	32	< 10,0
Case Navire (Duclos)	Tunnel Didier	08301101	Référence	17/05/2012 Sicydium sp.		59 23,5	3	0,03	< 0,001	< 1	79	< 10,0
Galion	Gommier	08221101	Référence	02/05/2012 M. heterochi	rus	26 21,4	3	0,02	< 0,001	< 1	259	< 10

RAPPORT FINAL Page 101/216

Stations du réseau de surveillance, contrôle opérationnel et d'enquête :

La totalité des stations a fait l'objet de prélèvements destinés à la réalisation d'analyses chimiques sur biotes (sur 1 à 2 échantillons) mais les poids de matière fraîche disponible n'ont pas été suffisants à la réalisation des analyses sur la station Stade de Grand Rivière.

Les analyses réalisées sur les différentes stations (Tableau 35) mettent en évidence une contamination en **Mercure sur 9 stations**: Carbet Fond Baise, Case Navire Bourg Schoelcher, Oman Dormante, Monsieur Pont de Montgérald, Lorrain Seguineau Lézarde Gué Désirade, Petite Rivière Brasserie Lorraine, Lézarde Pont RN1 et Pont Belle île. Les stations Bourg Schoelcher et Brasserie Lorraine faisaient déjà l'objet d'une contamination en 2011. Seules les contaminations en Mercure sur les stations Case Navire Bourg Schoelcher, Monsieur Pont de Montgérald et enfin Petite Rivière Brasserie Lorraine qui s'échelonnent de **20 µg/kg à 40 µg/kg de poids frais** ont nettement dépassé la limite de quantification de ce polluant lors de la campagne 2012. Conformément à l'absence de contamination sur les sites de référence en 2011 et en 2012, aucune contamination en Hexachlorobutadiène et en Hexachlorobenzène n'a été détectée sur l'ensemble du RCS, que ce soit lors du carême 2011 ou du carême 2012.

En revanche, et comme dans le cas des sites du réseau de référence, **la situation pour le chlordécone est davantage préoccupante** avec **20 stations** montrant des niveaux de contamination élevés en 2012, contre 18 en 2011. La seule station n'étant pas contaminée en 2012 est la station Carbet Fond Baise et il n'est pas possible de se prononcer pour la station Stade de Grand Rivière sur laquelle les analyses n'ont pas pu être réalisées. En 2011, seules les analyses sur les *sicydium sp.* avaient pu être réalisées et indiquaient des concentrations en chlordécone et métabolite trop faibles pour être quantifiées. Les niveaux de contamination s'échelonnent sur les autres stations de **19 μg/kg à 4640 μg/kg de poids frais.** En 2011, le taux maximal de contamination du compartiment biologique au chlordécone était cependant plus élevé avec une concentration mesurée de 8967 μg/kg, ce qui représentait plus de 10 fois le taux mesuré en 2010.

En ce qui concerne la contamination au **chlordécone-5b-hydro, 13 stations sur 21 sont contaminées en 2012** contre 14 en 2011. Les niveaux de contamination s'échelonnent de 13 μ g/kg sur la station Lorrain Seguineau à 213 μ g/kg de poids frais sur la station Roxelanne Saint Pierre. Ces taux sont globalement moindres que ceux observés en 2011 qui s'échelonnaient de 21 μ g/kg à 684 μ g/kg de poids frais.

RAPPORT FINAL Page 102/216

DEAL de la Martinique (972)

Tableau 37. Résultats des analyses physico-chimiques réalisées sur le biote dans les stations des réseaux de surveillance, de contrôle opérationnel et d'enquête, année 2012.

Rivière	Station	Code sandre	Type DCE	Date de capture	Espèce présente dans le lot	Poids frais (g)	Matière sèche (%)	Matière grasse (%)	Mercure (µg/kg PF)	Hexachlorobutadi ène (µg/kg PF)	Hexachlorobenzè ne (µg/kg)	Chlordécone (µg/kg)	Chlordécone 5b Hydro (µg/kg)
Carbet	Fond Baise	08322101	Surveillance	15/05/2012		108	23,4	3	0,01	< 0.001	< 1	< 10,0	< 10,0
Case Navire	Case Navire (bourg Schœlcher)	08302101	Surveillance	17/05/2012	Sicydium sp.	107	23,6	1	0,02	< 0,001	< 1	19	< 10,0
Madame	Pont de Chaines	08423101	Surveillance	17/05/2012	M. heterochirus	78	22	3	< 0,01	< 0,001	< 1	24	< 10,0
Lorrain	Amont confluent Pirogue	08203101	Surveillance	02/05/2012	M. heterochirus	62	23	2	< 0,01	< 0,001	< 1	26	< 10,0
Petite Pilote	Pont Madeleine	08813103	Contrôle opérationnel	21/05/2012	M. faustinum	33	23,3	2	< 0,01	< 0,001	< 1	49	< 10,0
Oman	Dormante	08824101	Surveillance	18/05/2012	M. heterochirus	30	20,4	3	0,01	< 0,001	< 1	51	< 10,0
Petite Pilote	Pont Madeleine	08813103	Contrôle opérationnel	21/05/2012	M. heterochirus	8	23,4	2	< 0,01	< 0,001	< 1	53	< 10,0
Petite Pilote	Pont Madeleine	08813103	Contrôle opérationnel	21/05/2012	Sycidium sp.	95	NA	NA	< 0,01	< 0,001	< 1	58	< 10,0
Monsieur	Pont Mongerald	08412102	Contrôle opérationnel		Sycidium sp.	155	24,5	4	< 0,01	< 0,001	< 1	271	31
Monsieur	Pont Mongerald	08412102	Contrôle opérationnel	30/05/2012	M. acanthurus	76	24,9	3	0,02	< 0,001	< 1	435	19
Grande Pilote	Amont Bourg Grande Pilote	08813103	Contrôle opérationnel	21/05/2012	Sycidium sp.	148	24,4	1	< 0,01	< 0,001	< 1	472	25
Lézarde	Gué de la Désirade	08521101	Surveillance	16/05/2012	Sicydium sp.	118	24,8	3	< 0,01	< 0,001	< 1	496	176
Bézaudin	Ste-Marie RD 24	08213101	Surveillance	30/04/2012	Sicydium sp.	34	24,3	5	< 0,01	< 0,001	< 1	529	22
Deux Courants	Pont Seraphin	08616101	Contrôle opérationnel	15/06/2012	M. acanthurus	197	22,6	3	< 0,01	< 0,001	< 1	564	68
Rivière des Coulisses	Petit Bourg	08803101	Surveillance	18/05/2012	M. acantharus	70	22,7	4	< 0,01	< 0,001	< 1	632	122
Bézaudin	Ste-Marie RD 24	08213101	Surveillance	30/04/2012	M. heterochirus	36	28	6	< 0,01	< 0,001	< 1	641	45
Roxelane	Pont St-Pierre	08329101	Surveillance	15/05/2012	Sicydium sp.	146	25,4	3	< 0,01	< 0,001	< 1	661	95
Grande Pilote	Amont Bourg Grande Pilote	08813103	Contrôle opérationnel	21/05/2012	M. faustinum	85	23	8	< 0,01	< 0,001	< 1	709	17
Lorrain	Seguineau	08205101	Contrôle opérationnel	31/05/2012	Sycidium sp.	68	24,6	2	< 0,01	< 0,001	< 1	785	13
Petite Rivière	Brasserie Lorraine	08533101	Contrôle opérationnel	15/06/2012	M. faustinum	77	24,8	3	< 0,01	< 0,001	< 1	895	66
Lorrain	Seguineau	08205101	Contrôle opérationnel	31/05/2012	M. heterochirus	78	20,8	1	0,01	< 0,001	< 1	919	37
Roxelane	Pont St-Pierre	08329101	Surveillance	15/05/2012	M. heterochirus	54	24,5	2	< 0,01	< 0,001	< 1	927	213
Capot	Pr AEP-Vivé-Capot	08115101	Surveillance	30/04/2012	M. acanthurus		22,3	8	< 0,01	< 0,001	< 1	1054	46
Lézarde	Gué de la Désirade	08521101	Surveillance	16/05/2012	M. heterochirus	54	25,8	4	0,01	< 0,001	< 1	1344	120
Petite Rivière	Brasserie Lorraine	08533101	Contrôle opérationnel	15/06/2012	Sycidium sp.	215	24,5	2	0,04	< 0,001	< 1	1481	149
Capot	Pr AEP-Vivé-Capot	08115101	Surveillance	30/04/2012	M. crenulatum	60	26,2	5	< 0,01	< 0,001	< 1	1666	132
Lézarde	Pont RN1	08521102	Surveillance	16/05/2012	M. faustinum	111	21,7	2	< 0,01	< 0,001	< 1	1865	106
Galion	Grand Galion	08225101	Surveillance	14/05/2012	M. heterochirus	65	22	6	< 0,01	< 0,001	< 1	1913	186
Lézarde	Pont RN1	08521102	Surveillance	16/05/2012	Sicydium sp.	25	25,7	11	0,01	< 0,001	< 1	2697	103
Petite Lézarde	Pont Belle Ile	08504101	Surveillance	14/05/2012	Sicydium sp.	40	23,2	4	0,01	< 0,001	< 1	4349	104
Petite Lézarde	Pont Belle Ile	08504101	Surveillance	14/05/2012	M. faustinum	33	24,4	3	< 0,01	< 0,001	< 1	4640	127

En conclusion, la situation observée en 2012 reste préoccupante du point de vue de la contamination des biotes par le mercure mais surtout par le chlordécone et son principal métabolite, le chlordécone 5b-hydro. Les données récoltées indiquent une augmentation des sites contaminés mais une diminution globale des taux observés, notamment en ce qui concerne les valeurs maximales de contamination.

RAPPORT FINAL Page 103/216

4. Synthèse générale

La synthèse de l'ensemble des résultats sur tous les sites de 2005 à 2012 est réalisée pour chacun des paramètres : physico-chimie, algues diatomées, invertébrés benthiques et poissons/macrocrustacés.

4.1. Etat chimique

L'état chimique des cours d'eau est évalué par des paramètres physico-chimiques mesurés en laboratoire. Cet état chimique est à prendre en compte pour le classement ou non d'une station en tant que station de référence. Une station de référence est définie selon la DCE comme devant être totalement ou presque totalement exempte de pressions. Les stations du présent réseau ont été initialement positionnées de façon à répondre au mieux à cette exigence. Il s'avère que si l'état chimique d'une station ne remplit pas les conditions de « bon état », cela peut signifier que la station n'est pas exempte de perturbation anthropique. Cependant, l'exclusion d'une station en tant que station de référence se fait par l'examen conjoint de la physico-chimie et des indices biologiques.

Tableau 38. Synthèse des paramètres physico-chimiques déclassants des stations de référence pour le suivi 2005-2012.

		DCE	
	Bon état DCE	Paramètres déclassants DCE	Paramètres potentiellement déclassants
Pont RD5 La Broue	NON	MES	Delta O2, Turbidité, Aluminium
Beauregard	NON	DCO	-
Source Pierrot	NON	DCO	-
Tunnel Didier	NON	PO4	Ptot, Mes, Aluminium

Sont intégrées dans ce tableau uniquement les stations au niveau desquelles ont été détectées des molécules potentiellement déclassantes.

Quatre stations du réseau de Martinique sont dans une situation de **mauvaise qualité** : Pont RD5 La Broue, Beauregard, Source Pierrot et Tunnel Didier. La station Tunnel Didier a présenté notamment un taux de phosphates (PO4 et Ptot) préoccupant.

4.2. Etat biologique

L'état biologique des cours d'eau est donné par au moins un organisme animal et un organisme végétal. Les résultats liés à la biologie sont comparés à la physico-chimie afin de savoir s'ils sont influencés ou non par des apports anthropiques. Si c'est le cas, la station est considérée comme étant en « non bon état » vis-à-vis de la référence. Les résultats des trois types d'organismes étudiés sont résumés dans le tableau 37 :

Tableau 39. Synthèse des indices biologiques des stations de référence pour le suivi 2012.

Indice	Stations présentant les meilleurs résultats	Stations présentant les moins bons résultats
Algues diatomées		
IPS	Palourde, Gommier, Trace des Jésuites, Tunnel Didier, Habitation Céron, Trou Diablesse	Pont RD5 La Broue, Beauregard
IBD	Palourde, Gommier, Trace des Jésuites, Tunnel Didier, Habitation Céron, Trou Diablesse	Pont RD5 La Broue, Beauregard
Macroinvertébrés benthiques		
Equitabilité	Palourde, Gommier, Trace des Jésuites, Tunnel Didier, Habitation Céron, Trou Diablesse,	Pont RD5 La Broue, Beauregard
Shannon	Palourde, Gommier, Trace des Jésuites, Tunnel Didier, Habitation Céron, Trou Diablesse,	Pont RD5 La Broue, Beauregard
Simpson	Palourde, Gommier, Trace des Jésuites, Tunnel Didier, Habitation Céron,	Pont RD5 La Broue, Beauregard, Trou Diablesse,

Les stations **en gras** sont celles présentant un déclassement de qualité biologique sur les compartiments des diatomiques et macro-invertébrés.

Ces résultats convergent pour indiquer que l'ensemble des stations à l'exception de Pont RD5 La Broue et Beauregard, présentent une bonne qualité eu égard aux différents compartiments biologiques. Les stations Pont RD5 La Broue et Beauregard apparaissent comme étant les moins biogènes.

Ces résultats sont cependant à nuancer. Le déclassement est en effet discutable en ce qui concerne le compartiment diatomique. Les stations RD5 La Broue et Beauregard ont en effet vu leur peuplement fortement influencé par la présence en nombre de l'espèce *Nitzschia inconspicua*. Ce taxon apparaissant comme plus ubiquiste en Martinique qu'en France Métropolitaine, il est de plus très répandu dans les cours d'eau du sud.

Par ailleurs, le fond géochimique favorisant la minéralisation des cours d'eau du sud, favoriserait la présence de cette diatomée. L'IBD et l'IPS ne sont donc pas adaptés pour juger de la qualité biologique globale de ces milieux et il est de ce fait difficile de se prononcer quant à l'atteinte du bon état sur ces stations. A noter qu'un travail de recherche devrait

prochainement aboutir à la caractérisation des préférenda écologiques des principales espèces et à la construction d'un indice adapté au contexte insulaire tropical.

RAPPORT FINAL Page 106/216

Tableau 40. Tableau de synthèse des indicateurs biologiques en 2012

Cours d'eau	Nom station	Code SANDRE	Type DCE ou complémentaire	Zono do ráfáronco	Objectif écologique		Indicat	eurs 2012	
Cours a eau	Nom Station	Code SANDRE	Type DCE ou complementaire	Zone de reference	sans chlordécone	IPS	IBD	Shannon	Equitabilité
Anse Céron	Amont prise canal Habitation Céron	08014101	Référence	Nord	ND	16,9	16,1	3,79	0,82
Bezaudin	Pont RD24 Sainte-Marie	08213101	Surveillance et opérationnel	Nord	2027	11,6	11,6	1,59	0,37
Blanche	Pont de l'Alma	08511101	Surveillance	Nord	2015	19,3	20,0	3,99	0,83
Capot	Pr AEP-Vivé-Capot	08115101	Surveillance et opérationnel	Nord	2015	17,1	17,7	3,09	0,59
Carbet	Fond Baise	08322101	Surveillance	Nord	2015	15,7	15,6	2,8	0,58
Carbet	Source Pierrot	08320101	Référence	Nord	ND	17,3	17,7	3,61	0,67
Case Navire	Case Navire (bourg Schœlcher)	08302101	enquête	Nord	2015	12,6	14,0	3,15	0,58
Case Navire (Duclos)	Tunnel Didier	08301101	Référence	Nord	ND	18,3	18,6	4,28	0,84
Deux Courants	Séraphin	08616101	Surveillance	Nord	2027	9,4	9,5	1,78	0,37
Galion	Grand Galion	08225101	Surveillance et opérationnel	Nord	2015	10,7	10,4	3,29	0,70
Galion	Gommier	08221101	Référence	Nord/Centre	ND	17,0	19,5	4,32	0,86
Grande Rivière	Stade de Grand Rivière	08102101	Surveillance	Nord	ND	18,3	18,2	0,82	0,18
Grande Rivière	Trou Diablesse	08101101	Référence	Nord	2015	18,6	19,6	2,73	0,54
Grande Rivière Pilote	Aval Bourg Rivière Pilote	08813102	enquête	Sud	2021	8,0	10,2	2,97	0,58
Grande Rivière Pilote	Beauregard	08811101	Référence	Sud	ND	10,5	10,9	1,01	0,24
Lézarde	PONT RN1	08521102	Surveillance et opérationnel	Nord	2027	8,8	11,3	3,62	0,76
Lézarde	Gué de la Désirade	08521101	Surveillance et opérationnel	Nord	2027	13,9	15,5	3,37	0,67
Lézarde	Trace des Jésuites	08201101	Référence	Nord	2015	17,4	18,6	3,63	0,78
Lézarde	Pont Belle-Île	08504101	Surveillance et opérationnel	Nord	2027	17,6	17,6	3,59	0,67
Lézarde	Palourde Lézarde	08501101	Surveillance/Référence	Nord/Centre	2015	16,7	18,2	4,18	0,78
Lorrain	Séguineau	08205101	enquête	Nord	2015	15,4	17,0	3,22	0,66
Lorrain	Amont confluent Pirogue	08203101	Surveillance	Nord	ND	16,9	17,8	3,77	0,77
Madame	Pont de Chaînes	08423101	Surveillance et opérationnel	Nord	2027	9,1	9,0	1,65	0,32
Monsieur	Pont de Montgérald	08412102	enquête	Nord	2027	11,0	12,2	3,39	0,68
Oman	Dormante	08824101	Surveillance et opérationnel	Sud	2015	10,0	11,5	3,4	0,75
Petite Pilote	Pont Madeleine	08812101	Surveillance	Sud	2021	8,2	10,5	2,97	0,61
Petite Rivière Pilote	Brasserie Lorraine	08533101	Surveillance ACER	Sud	ND	9,6	10,5	3,61	0,73
Rivières des Coulisses	Petit Bourg	08803101	Surveillance et opérationnel	Sud	2027	8,2	8,0	3,03	0,66
Roxelane	Saint Pierre (ancien pont)	08329101	Surveillance et opérationnel	Nord	2027	10,7	11,6	1,84	0,39
Vauclin	Pont D5 - La Broue	08703101	Référence	Sud	ND	12,0	11,1	1,19	0,27

Le tableau 40 regroupe les valeurs des indices calculés lors du suivi 2012 pour les compartiments diatomiques et macro-invertébrés.

RAPPORT FINAL Page 107/216

5. Définition de la référence

5.1. Bilan de la situation

Situation de la France continentale

Les masses d'eau sont clairement définies et correspondent à des types de cours d'eau décrits dans la circulaire DCE 2005/11 relative à la typologie nationale des eaux de surface. Les types se réfèrent aux cours d'eau classés par taille au sein d'une hydro-écorégion (HER) et sont décrits dans l'Arrêté du 25/01/2010.

Chaque masse d'eau a fait l'objet d'une évaluation afin de lui attribuer un objectif d'atteinte du « Bon Etat », et chacune possède déjà des valeurs limites provisoires de bon état pour les indices IBGN et IBD. Un extrait du tableau 2 de la circulaire 2005/11 est donné ci-dessous :

		OGIQUE – <u>INVERTEBRES</u> ormalisé (norme NF T90-350)				l'IBGN « I de cours d	
		Classes de taille de cours d'eau ou rangs : bassin Loire-Bretagne	8,7	6	5	4	3,2,1
		autres bassins	8, 7, 6	5	4	3	2, 1
I	Hydroécorégions de niveau 1	Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits
		Cas général		16 -]:	15-13]	16 -]15-13]	16 -]15-13]
20 DEPOTS ARGILO SABLEUX		Exogène de l'HER 9 (Tables Calcaires)		15 -]:	14-12]		
		Exogène de l'HER 21 (Massif Central Nord)		#	19-]17-15]		
21 MASSIF CENTRAL NORD		Cas général		#	15-11/-15]	19-]17-15]	19-]17-15]

L'essentiel à retenir dans ces éléments est que :

- Chaque cours d'eau appartient clairement à un type bien défini ;
- Les connaissances acquises sur les cours d'eau ainsi que la fiabilité des indices écologiques ont permis de définir des valeurs limite de bon état, certes provisoires mais néanmoins utilisables pour l'analyse des résultats des sites de surveillance.
- Un objectif d'atteinte du bon état est attribué à chaque masse d'eau suivie.

Situation de la Martinique - extrait du SDAGE révisé en décembre 2009

Les objectifs pour les cours d'eau ont été établis dans le cadre du SDAGE, sur la base de l'état écologique et chimique des cours d'eau sur 2007-2008.

L'état écologique repose sur des paramètres biologiques mais aussi sur des paramètres physico-chimiques qui conditionnent la vie biologique des masses d'eau. Il s'agit de paramètres physico-chimiques généraux et de quelques polluants spécifiques retenus au niveau national. La problématique locale de la contamination des milieux par la chlordécone a conduit la France à considérer cette substance parmi les polluants synthétiques de l'état

RAPPORT FINAL

écologique des masses d'eau superficielles, pour la Martinique et la Guadeloupe. Compte tenu de l'étendue de la contamination du bassin par ce pesticide, des cartes de l'état écologique sont présentées avec et sans chlordécone afin de ne pas masquer l'état des eaux pour les autres paramètres de l'état écologique et les efforts à y entreprendre. Enfin, compte tenu de la rémanence de ce pesticide (plusieurs dizaines d'années), conformément à ce qui permet la DCE des objectifs moins stricts sont retenus pour les masses d'eau n'atteignant pas le bon état écologique à cause de la chlordécone.

L'état chimique n'est relatif qu'à 41 substances, définies par la DCE et d'autres textes européens. Ces 41 substances sont identiques pour tous les pays européens. La chlordécone ne fait pas partie de ces 41 substances.

L'objectif global est le croisement de l'objectif chimique et de l'objectif écologique, la valeur la plus pénalisante étant retenue. Un objectif global sans prendre en compte le chlordécone a aussi été défini.

Tableau 41. Objectif de qualité des masses d'eau du SDAGE Martinique en cours de révision en 2009.

Chattantal annatitatal à			Objectif "Bon Etat" retenu en 2009				
Station(s) associée(s) à la masse d'eau	Masse d'eau	Code	Chimique	Ecologique	Ecologique sans chlordécone	Global	Global sans chlordécone
Trou diablesse	Grand'Rivière	FRJR101	2015	2015	2015	2015	2015
	Capot	FRJR102	2015	Moins strict	2015	Moins strict	2015
Trace des Jésuites	Lorrain amont	FRJR103	2015	2015	2015	2015	2015
	Lorrain aval	FRJR104	2015	Moins strict	2015	Moins strict	2015
	Sainte-Marie	FRJR105	2027	Moins strict	2027	Moins strict	2027
Gommier	Galion	FRJR106	2021	Moins strict	2015	Moins strict	2021
Desroses	François	FRJR107	2021	Moins strict	2027	Moins strict	2027
Beauregard	Pilote	FRJR108	2021	Moins strict	2021	Moins strict	2021
Bois d'inde	Oman	FRJR109	2015	2015	2015	2015	2015
	Salée	FRJR110	2027	Moins strict	2027	Moins strict	2027
	Lézarde aval	FRJR111	2027	Moins strict	2027	Moins strict	2027
	Lézarde moyenne	FRJR112	2027	Moins strict	2027	Moins strict	2027
Palourde	Lézarde amont	FRJR113	2015	2015	2015	2015	2015
Alma	Blanche	FRJR114	2015	2015	2015	2015	2015
	Monsieur	FRJR115	2027	2027	2027	2027	2027
	Madame	FRJR116	2027	2027	2027	2027	2027
Tunnel Didier	Case Navire amont	FRJR117	2015	2015	2015	2015	2015
	Case Navire aval	FRJR118	2015	2015	2015	2015	2015
Source Pierrot	Carbet	FRJR119	2015	2015	2015	2015	2015
	Roxelane	FRJR120	2027	Moins strict	2027	Moins strict	2027
	Manzo	FRJR121	2015	2015	2015	2015	2015
Pont RD5 La Broue				pas de ma	asse d'eau		
Amont Habitation Céron				pas de ma	asse d'eau		

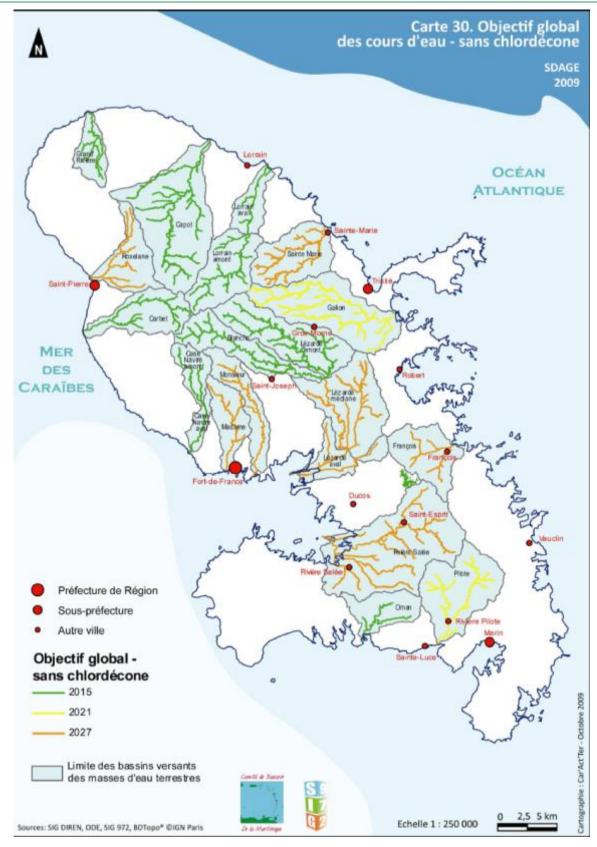


Figure 29. Objectif global des cours d'eau de Martinique, sans chlordécone. SDAGE 2009.

5.2. Types de masses d'eau

Afin de définir les valeurs provisoires de référence pour les indices à disposition, des types de masses d'eau ont été définies en 2008 en fonction des peuplements rencontrés aux différentes stations de référence. Les groupements apportés en 2008 ne seront pas revus en 2009 puisqu'il n'y aurait qu'une ou deux (selon que ce soit les diatomées ou les invertébrés) valeurs à ajouter à l'analyse.

La méthode de classification qui a été utilisée est la **Classification Hiérarchique Ascendante** (CAH) par la méthode des inerties de Ward. C'est un modèle classiquement utilisé en écologie car robuste. Le but de la classification est de réaliser un dendrogramme ou arbre représentant la proximité (ici, suivant la dissimilarité) entre les différents individus (stations d'étude). Le principe de la méthode est la réalisation d'une matrice de distance entre les éléments (ici, paramètres physico-chimiques, abondances relatives des espèces), avec les éléments de la matrice correspondant à toutes les paires possibles. L'indice de dissimilarité à une valeur comprise entre 100 (différence totale) et 0 (similitude totale).

A partir de ces éléments, les regroupements ont été effectués **en prenant en compte uniquement les stations de référence** qui sont considérées comme exemptes de pressions anthropiques et donc représentatives de la situation « naturelle » des indicateurs.

Les HER (hydro-éco-régions) de Martinique ont été définies par le Cemagref dans le cadre d'une circulaire :

- HER Volcans du Nord Ouest, qui représente les cours d'eau de l'ensemble de la partie nord de l'île jusqu'à la rivière Lézarde en excluant son affluent la Petite Rivière (HER Nord);
- HER Sud Est de l'île, qui représente les cours d'eau des parties sud et centre de l'île en incluant les cours d'eau du bassin versant de la baie du Robert et la Petite Rivière (HER Sud).

L'analyse de la **physico-chimie** confirme la pertinence de ces deux HER, de même que l'analyse **des peuplements d'invertébrés benthiques.**

Du point de vue des **peuplements diatomiques, les deux groupes** sont également pertinents, avec l'identification de deux sous-groupes au niveau de l'HER Volcans du Nord Ouest, du fait de peuplements diatomiques particuliers au Centre de l'île :

- HER Volcans du Nord Ouest :
 - Sols de type allophane : regroupe les têtes de bassins de la rivière Lézarde, Galion et Sainte-Marie (HER Nord Centre) ;
 - Tous les autres types de sols : les cours d'eau de l'ensemble de la partie nord de l'île jusqu'à la rivière Lézarde en excluant son affluent la Petite Rivière (HER Nord) ;
- HER Sud Est de l'île, qui représente les cours d'eau des parties sud et centre de l'île en incluant les cours d'eau du bassin versant de la baie du Robert et la Petite Rivière (HER Sud).

Ces HER se traduisent par la définition de valeurs de référence spécifiques. Les indices relatifs aux invertébrés benthiques seront donc déclinés en deux types (deux grilles d'état), et les indices diatomiques en trois types.

RAPPORT FINAL Page 111/216

DEAL de la Martinique Suivi DCE Martinique (972) Année 2012

L'élément biologique que constituent les poissons et les macrocrustacés n'est pas considéré dans la définition des zones servant au calcul de la valeur de référence.

5.3. Calcul de la référence

L'étude des stations dites de référence depuis 2005 a été réalisée dans le but de définir des valeurs seuils de bon état par zone pour les éléments biologiques étudiés, c'est-à-dire que :

- Les éléments étudiés sont les **algues diatomées**, les **invertébrés benthiques** et les **poissons et macro-crustacés**.

Comme mentionné précédemment, la circulaire 2005/12 précise que l'évaluation de l'état écologique doit s'effectuer au minimum sur la base d'un organisme « animal » et d'un organisme « végétal ». Parmi ces éléments, **les poissons ne sont pas retenus pour servir de référence** étant donné le caractère inadéquat aux Antilles de l'indice IPR utilisé en métropole pour cet élément biologique. Les résultats concernant les poissons et macro-crustacés sont pour le moment utilisés à titre informatif afin d'avoir suffisamment de données pour établir un indice local ultérieurement.

- Les valeurs de référence sont définies pour les diatomées à partir de l'**IPS** et de l'**IBD**. Pour les invertébrés il n'y aura pas une référence basée sur l'IBGN comme décrit dans la circulaire DCE 2005/12, mais deux références définies à partir des indices structuraux de **Shannon** et d'**Equitabilité** (l'indice de Simpson ne se révèle pas suffisamment discriminant).

Le calcul de la référence pour les différents indices donne les résultats présentés dans les tableaux suivants. L'écart-type pour chaque zone est également calculé, afin de juger de la fiabilité de la valeur de référence (médiane) et de l'intérêt ou non de poursuivre la collecte de données. Les limites de classes, calculées selon le mode de calcul de la circulaire DCE 2005/12, sont également présentées.

Diatomées -IPS et IBD

Les valeurs de référence et classes de qualité basées sur l'indice IPS sont:

2012							
		Médiane		Moyenne	ET		
	Nord	16		15,55	2,1	.31	
	Sud	10,75		11,76	2,7	773	
	Nord centre	19,6		19,41	0,6	518	
2011 (pour rappel)				2	2010	(pour rappe	el)
Médiane ET						Médiane	ET
Nord	14,75	1,835		Nord		14,5	1,862
Sud	10,5	2,567		Sud		10,5	2,431
Nord centre	18,8	1,258		Nord cen	tre	18,9	1,237
2009	9 (pour rapp	oel)		2008 (pour rappel)			
	Médian	e ET				Médiane	ET
Nord				Nord		15,1	1,514
Sud	14,75	1,896		Sud		10,4	3,135
Nord centre	10,35 18,8	2,742 1,308		Nord cer	ntre	18,7	1,442

Tableau 42. Limites de classes de la référence IPS :

a) recalculées avec les données 2012

IPS	Nord	Sud	Nord/Centre
Très bonne	14,16	9,89	17,53
Bonne	11,33	7,91	14,03
Moyenne	8,49	5,93	10,52
Médiocre	5,66	3,96	7,01
Mauvaise	2,83	1,98	3,51

b) calculées en 2011

IPS	Nord	Sud	Nord/Centre
Très bonne	13,83	9,84	17,63
Bonne	11,06	7,88	14,10
Moyenne	8,30	5,91	10,58
Médiocre	5,53	3,94	7,05
Mauvaise	2,77	1,97	3,53

c) calculées en 2010

IPS	Nord	Sud	Nord/Centre
Très bonne	13,59	9,84	17,72
Bonne	10,88	7,88	14,18
Moyenne	8,16	5,91	10,63
Médiocre	5,44	3,94	7,09
Mauvaise	2,72	1,97	3,54

Entre 2010 et 2012, les valeurs des seuils augmentent légèrement pour les HER Nord et Sud. Pour l'HER Centre/Nord en revanche, elles ont tendance à diminuer quelque peu. L'augmentation du jeu de données tend à réduire la variabilité autour de ces valeurs.

Les valeurs de référence et classes de qualité basées sur l'indice IBD sont :

2012					
	Nord Sud	Médiane 16 10,75	Moyenne 15,55 11,76	ET 2,131 2,773	
	Nord centre	19,6	19,41	0,618	
201	1 (pour rapp	el)		2010 (pour rapp	el)
	Médiane	ET		Médiane	ET
Nord	15,45	1,972	Nord	15,3	1,719
Sud	10,6	2,632	Sud	10,6	2,632
Nord centre	19,65	0,496	Nord cei	ntre 19,65	0,496
200	9 (pour rapp	el)		2008 (pour rapp	el)
	Médiane	ET		Médiane	ET
Nord	15,45	1,829	Nord	16	1,549
Sud	10,5	2,859	Sud	10,4	3,135
Nord centre	19,6	0,519	Nord cen	itre 19,55	0,569
Nord Centre	19,0	0,519	Nord Cen	19,55	0,569

Tableau 43. Limites de classes de la référence IBD

a) recalculées avec les données 2012

IBD	Nord	Sud	Nord/Centre
Très bonne	15,00	10,08	18,38
Bonne	12,00	8,06	14,70
Moyenne	9,00	6,05	11,03
Médiocre	6,00	4,03	7,35
Mauvaise	3,00	2,02	3,68

b) calculées en 2011

IBD	Nord	Sud	Nord/Centre		
Très bonne	14,48	9,94	18,42		
Bonne	11,59	7,95	14,74		
Moyenne	8,69	5,96	11,05		
Médiocre	5,79	3,98	7,37		
Mauvaise	2,90	1,99	3,68		

c) calculées en 2010

IBD	Nord	Sud	Nord/Centre
Très bonne	14,34	9,94	18,42
Bonne	11,48	7,95	14,74
Moyenne	8,61	5,96	11,05
Médiocre	5,74	3,98	7,37
Mauvaise	2,87	1,99	3,68

L'évolution des valeurs entre 2010 et 2012 présente une augmentation des valeurs seuil pour les HER Nord et Sud qui vont de ce fait être plus pénalisantes. En ce qui concerne la zone Nord/Centre, Les valeurs seuils ont tendance à diminuer en 2012 dans des proportions minimes.

Invertébrés benthiques - Shannon et Equitabilité

Les valeurs de références et classes de qualité basées sur l'indice structural de **Shannon** sont :

	2012					
	Nord Sud	Médiane 3,50 2,99	Moyenne 3,51 2,67	ET 0,43 0,97		
201	1 (pour rappe	l)		2010 (pour rappe	l)
	Médiane	ET			Médiane	ET
Nord	3,49	0,42	Nord		3,49	0,42
Sud	2,99	0,88	Sud		2,99	0,88
200	9 (pour rappe	l)	2008 (pour rappel)			
	Médiane	ET		ı	Médiane	ET
Nord	3,49	0,42	Nord		3,49	0,397
Sud	2,99	0,82	Sud		3,03	0,795

Tableau 44. Limites de classes de la référence Shannon invertébrés benthiques

a) recalculées avec les valeurs de 2012

Shannon	Nord	Sud				
Très bonne	3,28	2,80				
Bonne	2,63	2,24				
Moyenne	1,97	1,68				
Médiocre	1,31	1,12				
Mauvaise	0,66	0,56				
b)	b) Calculées en 2011					
Shannon	Nord	Sud				
Très bonne	3,27	2,94				
Bonne	2,62	2,36				
Moyenne	1,96	1,77				
Médiocre	1,31	1,18				
Mauvaise	0,65	0,59				
c)	calculées en	2010				
Shannon	Nord	Sud				
Très bonne	3,27	2,80				
Bonne	2,62	2,24				
Moyenne	1,96	1,68				
Médiocre	1,31	1,12				

Les valeurs de 2012 sont revenues à un niveau comparable à celui de 2010 attestant du caractère spécifique des données recueillies en 2011 (les seuils restent quasiment identiques pour le Nord).

Mauvaise 0,65 0,56

Les valeurs de références et classes de qualité basées sur l'indice structural d'**équitabilité** sont :

		20	12				
	Nord Sud	Médiane 0,70 0,50	Moyenne 0,69 0,52	ET 0,12 0,19			
	2011			2010 ((pour rappe	el)	
	Médiane	ET			Médiane	ET	
Nord	0,70	0,11	Nord		0,70	0,12	
Sud	0,51	0,18	Sud		0,51	0,17	
2009	9 (pour rappel))	2008 (pour rappel)				
	Médiane	ET			Médiane	ET	
Nord	0,68	0,13	Nord		0,67	0,12	
Sud	0,51	0,18	Sud		0,51	0,17	

Tableau 45. Limites de classes de la référence Equitabilité invertébrés benthiques

a) recalculées avec les données 2012

Equitabilité	Nord	Sud
Très bonne	0,66	0,47
Bonne	0,53	0,38
Moyenne	0,39	0,28
Médiocre	0,26	0,19
Mauvaise	0,13	0,09

b) calculées en 2011

Equitabilité	Nord	Sud
Très bonne	0,66	0,48
Bonne	0,53	0,38
Moyenne	0,39	0,29
Médiocre	0,26	0,19
Mauvaise	0,13	0,10

c) calculées en 2010

Equitabilité	Nord	Sud
Très bonne	0,65	0,47
Bonne	0,52	0,38
Moyenne	0,39	0,28
Médiocre	0,26	0,19
Mauvaise	0,13	0,09

Les valeurs médianes de référence restent très semblables entre 2010 et 2012 pour les deux HER Nord et Sud, de même que les écart-types.

Entre les deux indices diatomées, l'IPS est le plus pénalisant par rapport à la notation des stations de surveillance. Dans le cas des macroinvertébrés, l'indice d'équitabilité est plus pénalisant que l'indice de Shannon.

RAPPORT FINAL Page 116/216

6. Annexes

RAPPORT FINAL Page 117/216

Annexe 1 : Physico-chimie

							MO	ох				- Matiè	res Azotée	s hors nit	TR - Nitrat	OS - Mati	ières phospho	re- Particul	es en suspe
Code station	campagne	Cours d'eau	Station	Commune	Localisation	Oxygène dissous	Taux de saturation	DBO ₅	COD	NH ₄ ⁺	NKJ	NH ₄ ⁺	NKJ	NO ₂	NO ₃	PO ₄ 3-	Ptot	MES	Turbidité
						mg/l	%	mg/I O ₂	mg/I C	mg/l NH ₄	mg/l N	ng/l NH	mg/l N	ng/l NO	mg/I NO ₃	ng/l PO	mg/l	mg/l	NTU
	carême 2009					7,8	93	0,5	1,4	<0,05	<1	<0,05	<1	<0,02	<1	0,09	<0,02	6	1,7
	hivernage 2009					8,7	89	<0,5	0,5	<0,05	<1	<0,05	<1	<0,02	<1	0,09	0,06	25	1,8
GRD	carême 2010	Grand Rivière	Trou Diablesse	Grand Rivière	Trou Diablesse	8,5	102	0,5	0,9	<0,05	<1	<0,05	<1	<0,02	<1	0,06	0,03	34	3,1
	carême 2011					8,9	109	0,2	0,7	0,004	<1	0,004	0,04	<0,02	0,42	0,052	0,007	2	
	carême 2012					9,1	104	<0,5	0,392	<0,02	<0,5	<0,02	0,49	<0,02	0,73	0,055	0,049	7,2	0,54
	carême 2009					8,3	101	0,5	0,5	<0,05	<1	<0,05	<1	<0,02	<1	0,09	<0,02	5	2,2
	hivernage 2009					8,3	101	0,5	0,4	<0,05	<1	<0,05	<1	<0,02	<1	0,01	0,02	10	1,1
LOR	carême 2010	Lorrain	Trace des Jésuites	Le Lorrain	Trace des Jésuites	7,7	92	0,6	0,3	<0,05	<1	<0,05	<1	<0,02	<1	0,01	<0,02	13	2,6
	carême 2011					8,4	96	0,3	0,44	<0,05	<1	0,002	0,09	<0,02	0,12	0	0,001	6,1	
	carême 2012					7,4	86	<0,5	0,303	<0,02	<0,5	<0,02	0,49	<0,02	0,29	0,049	0,049	1,99	0,37
	carême 2009					8,15	99,9	<0,5	1,00	<0,05	<1	<0,05	<1	<0,02	<1	0,10	<0,02	9,80	3,20
	hivernage 2009					6,94	88,5	<0,5	1,10	<0,05	<1	<0,05	<1	<0,02	<1	0,02	0,03	31,00	2,20
CAN	carême 2010	Duclos	Tunnel Didier	Fort de France	Tunnel Didier	6,70	82,0	0,80	0,80	<0,05	<1	<0,05	<1	<0,02	<1	0,05	<0,02	21,00	1,40
	carême 2011					8,71	99,6	0,60	0,75	<0,05	<1	0,01	0,05	<0,02	0,29	0,00	0,00	1,10	
	carême 2012					8,51	100,3	<0,5	0,68	<0,02	<0,5	<0,02	0,49	<0,02	0,41	0,05	0,05	2,50	1,35
	carême 2009					7,61	92,0	0,50	0,70	<0,05	<1	<0,05	<1	<0,02	<1	0,09	<0,02	4,00	1,60
	hivernage 2009					7,81	90,1	<0,5	0,50	<0,05	<1	<0,05	<1	<0,02	<1	0,05	0,06	35,00	14,00
CAR	carême 2010	Carbet	Source Pierrot	Fond St Denis	Source Pierrot	8,24	99,2	0,70	0,50	<0,05	<1	<0,05	<1	<0,02	<1	0,02	<0,02	19,00	4,80
	carême 2011					8,75	99,9	0,50	0,50	<0,05	0,05	<0,02	0,05	<0,02	0,07	0,03	0,02	2,5	
	carême 2012					8,48	100,3	<0,5	6,84	<0,02	<0,5	<0,02	0,49	<0,02	0,29	0,05	0,05	4,3	0,8
	carême 2009					7,65	89,5	0,50	0,80	<0,05	<1	<0,05	<1	<0,02	<1	0,09	<0,02	38,0	1,0
655	hivernage 2009					7,67	88,1	<0,5	0,70	<0,05	<1	<0,05	<1	<0,02	<1	0,05	0,04	34,0	5,7
CER	carême 2010	Anse Céron	Habitation Céron	Le Prêcheur	Habitation Céron	7,85	94,3	0,60	0,80	<0,05	<1	<0,05	<1	<0,02	<1	0,04	<0,02	24,0	4,9
	carême 2011					8,24	99,6	0,60	0,90	<0,05	0,07	0,01	0,07	<0,02	0,41	0,02	0,01	4,2	0.6
	carême 2012					9,17	103,9	<0,5	9,18	<0,02	<0,5	<0,02	0,49	<0,02	0,48	0,05	0,05	3,4	0,6
	carême 2009					8,17	98,8	<0,5	0,50	<0,05	<1	<0,05	<1	<0,02	<1	0,10	<0,02	7,0	0,7
PAL	hivernage 2009	Lézarde	D-1	C NA	Dalamala I farada	6,68	71,5	<0,5	0,40	<0,05	<1	<0,05	<1	<0,02	<1	0,10	0,03	14,0	1,1
PAL	carême 2010	Lezarde	Palourde Lézarde	Gros Morne	Palourde Lézarde	7,53	90,0	0,80	0,40	<0,05	<1	<0,05	<1	<0,02	<1	0,01	<0,02	10,0	1,8
	carême 2011					8,30 8,49	100,9 98.6	0,20	0,70	<0,02	0,20	<0,02	0,20	<0,02	0,12	<0,01	<0,02	1,9	0.8
-	carême 2012						98,6	<0,5	0,49	<0,02 <0.05	<0,5 <1	<0,02	0,49	<0,02	0,29 <1	0,05	0,05 <0.02	5.0	3.9
	carême 2009 hivernage 2009					8,09 6,59	99,2 82.5	0,50 <0.5	0,60	<0.05	<1	<0.05	<1 <1	<0.02	<1	0.09	<0.02	18.0	2.6
GAL	carême 2010	Galion	Gommier	Gros Morne	Gommier	7.48	89.6	0.50	0,30	0.13	<1	0.13	<1	<0.02	1.00	<0.01	<0.02	8.8	1.0
OAL	carême 2011	Gallon	Gomme	GIO3 IVIOITIE	Gommen	8.16	100.7	0,30	0.45	<0.02	0.23	<0.02	0.23	<0.02	0.53	<0.01	<0.02	1.7	1,0
	carême 2012					8,06	95,0	<0.5	0,43	<0.02	<0.5	<0.02	0,23	<0.02	0,55	0.05	0.05	2.0	1.2
	carême 2012					7,19	85,0	0.60	2,60	<0.05	<1	<0,02	<u>0,49</u> <1	<0.02	<1	0,03	0.09	45,0	24,0
	hivernage 2009					8,33	102.7	< 0.5	2,40	<0.05	<1	<0.05	<1	<0.02	<1	0,11	0,09	86.0	30.0
VAU	carême 2010	Vauclin	La Broue	Vauclin	La Broue	7,65	102,7	0.50	3,40	<0.05	<1	<0.05	<1	<0.02	<1	0,27	0,15	75.0	25.0
VAU	carême 2011	vauCIIII	La bioue	vauciiii	La biode	8,73	111.9	1.00	3,40	0.03	0.35	0.03	0.35	0.01	0.69	0,22	0,14	8.0	23,0
	carême 2012					7,21	86,8	1,00	2,59	0.03	0,55	0,03	0,55	<0.02	1.47	0,33	0,15	2.0	3.7
	carême 2012					4.66	58.0	0.70	5.40	< 0.05	<1	<0.05	<1	<0.02	<1,47	0.10	0.03	116.0	50.0
	hivernage 2009					4,66	58,0 61,5	<0.5	2.90	<0.05	<1	<0.05	<1	<0.02	<1	0.07	0,03	164.0	39.0
PIL	carême 2010	Pilote	Beauregard	Rivière Pilote	Beauregard	4,95	52.6	0.60	3.80	0.05	<1	0.05	<1	<0.02	1.10	0.06	0,06	106.0	98.0
, ric	carême 2011	riiote	Deaulegalu	mviere riiote	Deaulegalu	5.88	71.7	1.00	5.28	0,03	0.67	<0.02	0.67	<0.02	0.38	0.09	0,10	35.2	30,0
	carême 2011					6.24	71,7	1,00	3.12	0,02	<0.5	0.02	0,67	<0.02	0,38	0,09	0,07	2.0	4.1
	careffie 2012		1	L		0,24	73,0	1,20	3,12	0,02	<0,5	0,02	0,49	<0,02	0,80	0,13	0,05	2,0	4,1

RAPPORT FINAL Page 118/216

							Acidification					MINE - Mir	néralisation					Silice dissout
Code station	campagne	Cours d'eau	Station	Commune	Localisation	Température	рН	Conductivité	Calcium	Magnésium	Sodium	Potassium	Chlorures	Sulfates	Bicarbonates	TAC	ТН	Si
						°C		μS/cm	mg/l Ca ²⁺	mg/l Mg ²⁺	mg/l Na [†]	mg/l K [†]	mg/l Cl ⁻	mg/I SO4 ²⁻	mg/I HCO ₃	d°F	d°F	mg/l
	carême 2009					24,0	7,7	93	6,8	2	8,2	1,4	9	2,5	37,9	3,1	2,7	36
	hivernage 2009					24,5	7,9	146	8,2	2,4	12,1	2,1	8,9	5,1	45	3,7	3,1	53,5
GRD	carême 2010	Grand Rivière	Trou Diablesse	Grand Rivière	Trou Diablesse	24,2	8,3	132	9,5	2,8	10,1	1,7	10,9	3,3	46	3,75	3,5	9,5
	carême 2011					22,5	8,2	112	8,42	2,48	9,3	1,54	9,2	2,47	45,6	3,8	3,1	43,43
	carême 2012					22,0 24.2	8,1 7.7	102	9,27	2,8	10,05	1,73 0.6	9,7	2,73 19.4	50,9 22.5	4,24 1.9	3,5 3.4	50,49 20.5
	carême 2009 hivernage 2009					24,2	7,7	128 153	9,4 9.2	2,5	6,9 5	0,6	6,9 6,2	20,8	22,5	1.8	3,4	20,5
LOR	carême 2010	Lorrain	Trace des	Le Lorrain	Trace des	24,5	7,7	135	9,2 14	3,8	7.4	0,5	14.7	39.7	22.1	1.8	5.0	6.7
LON	carême 2011	Lonain	Jésuites	Le Lorrain	Jésuites	24,4	7,9	129	13.11	3.42	6.84	0,7	7.82	37	16.3	1.36	4.7	18.4
	carême 2012					21,7	8,1	115	9,98	2,61	6,7	0,58	6.51	19,3	27	2,25	3,6	25,67
	carême 2012					24.60	7,70	94,00	6,70	2,30	9,20	1,20	9,60	3,10	35,40	2,90	2,6	28,00
	hivernage 2009					25.30	7,70	141	4.80	1.30	4.10	0.60	5,90	3.10	26.00	2.10	1.9	38.70
CAN	carême 2010	Duclos	Tunnel Didier	Fort de France	Tunnel Didier	26.30	7,76	128	8,20	3.00	10.20	1,50	14.60	3,60	41.00	3,35	3.1	18,90
0,	carême 2011	240.03	ranner Braier	Tort de Trance	ranner Braier	21.90	7,67	112	7.69	2.81	9.51	1.21	11.04	2.37	42.90	3.57	3.1	29.95
	carême 2012					22.50	7.95	143	8.57	3.17	10.40	1.36	11.34	2,53	51.90	4.32	3,4	36.37
	carême 2009					28.00	7.99	111	10.30	2.70	8.50	0.90	6.90	7.60	46.00	3.80	3.7	28.50
	hivernage 2009					24.50	7.98	150	11.70	3.10	8.90	0.90	7.30	7.20	39.00	3.20	3.1	36.30
CAR	carême 2010	Carbet	Source Pierrot	Fond St Denis	Source Pierrot	24.90	8.30	142	11,00	3,20	8.70	1.00	13.10	15.10	37.80	3.10	3,5	6,60
	carême 2011					21,9	8,37	137	10,3	2,8	8,0	0,8	7,7	8,0	45,5	3,8	3,7	28,5
	carême 2012					22,8	8,31	121	10,9	3,0	8,6	0,9	7,4	8,1	52,7	4,4	4,0	31,0
	carême 2009					24,2	7,89	141	12,3	3,1	11,1	1,2	11,6	3,2	61,6	5,1	4,5	36,7
	hivernage 2009					24,2	7,80	172	10,0	2,6	13,9	1,6	10,7	5,3	50,0	4,1	3,6	45,1
CER	carême 2010	Anse Céron	Habitation Céron	Le Prêcheur	Habitation Céron	24,6	8,17	160	11,0	3,3	11,1	1,2	18,0	4,9	30,3	2,5	4,3	13,6
	carême 2011					24,9	8,31	150	11,7	3,0	10,2	1,1	10,6	2,9	57,7	4,8	4,1	34,4
	carême 2012					22,4	8,13	145	12,2	3,2	10,7	1,2	10,7	3,0	64,7	5,4	4,4	39,8
	carême 2009					23,4	7,19	55	3,9	1,6	6,5	0,7	6,4	12,7	19,2	1,6	1,4	16,8
	hivernage 2009					25,9	7,00	61	5,7	2,2	7,8	0,8	8,6	4,9	25,0	2,0	1,8	25,1
PAL	carême 2010	Lézarde	Palourde Lézarde	Gros Morne	Palourde Lézarde	24,4	7,85	75	5,0	1,8	6,3	0,6	14,0	3,9	18,8	1,6	2,0	7,1
	carême 2011					22,0	7,96	64	3,6	1,4	5,4	0,5	7,2	2,3	19,3	1,6	1,5	16,7
	carême 2012					21,6	7,90	69	4,0	1,6	5,8	0,6	7,3	2,3	20,9	1,7	1,6	19,7
	carême 2009		1			24,1	7,09	48	2,2	1,3	5,6	0,6	8,6	2,3	11,7	1,0	1,1	13,1
GAL	hivernage 2009 carême 2010	Galion	Gommier	Gros Morne	Gommier	24,9 24.6	6,78 7.55	pb sonde 62	1,9 2.8	1,3 1.6	8,8 6.1	0,9 0.5	7,3 11.4	6,8	14,0 12.1	1,1	1,0 1.5	21,0 1.5
GAL	carême 2010	Gallon	Gorillillei	GIOS MOTTE	Gomme	22.8	7,55	56	2,8	1.3	5.4	0,5	8.2	1.8	12,1	1.0	1,5	12.6
	carême 2012					21.8	7,92	59	2,2	1,3	5.6	0,5	8.3	1.8	12,2	1.1	1,1	15.0
	carême 2009					27.9	7,38	pb sonde	34.0	18.6	55.4	3.1	96.0	12.6	154.0	12.6	15.9	37.4
	hivernage 2009		1			27,9	7,56	pb sonde	29,0	16,2	78.5	3,8	85,3	11.9	133.0	10.9	14,1	29,8
VAU	carême 2010	Vauclin	La Broue	Vauclin	La Broue	30.1	8.11	783	33,0	21.0	58.8	3,8	107.0	22.0	131.0	10,5	16.9	13,8
	carême 2011		20 5.000		20 5.000	28.0	8.31	742	44.4	16.9	50.0	2.9	89.2	15.0	181.4	15.1	18.0	38.3
	carême 2012		1			24.9	7,95	765	48.3	18.5	51.5	3.5	100.2	18.2	178.4	14.9	19.7	40.9
	carême 2009		1	İ		26.5	7,68	pb sonde	58.0	40.2	118.0	3,6	232.0	14.4	276.0	22.6	32.2	45.0
	hivernage 2009		1			25.8	7,74	pb sonde	50,0	33.0	106.0	2.7	215.5	12.2	214.0	17.6	26.0	23,3
PIL	carême 2010	Pilote	Beauregard	Rivière Pilote	Beauregard	26.8	7.89	1510	57.0	54.5	110.0	4.3	242.0	21.2	259.0	21.3	36.7	12.1
	carême 2011					25,1	8,13	1560	76,8	30,0	90,1	3,5	187,8	16,4	270,4	22,5	31,5	37,4
	carême 2012		1			24.5	8.14	1376	87,6	35,2	97,5	4,2	215,0	21.8	299.1	24.9	36.3	43.6

RAPPORT FINAL Page 119/216

Annexe 2 : Fiches de synthèse des stations

RAPPORT FINAL Page 120/216

FICHE STATION DIATOMEES

Page 1/2 2010

			STATION				
nº échantillon :	CANm5						
COURS D'EAU:	Duclos	DATE:	19/03/2012		RENSEIGNEMENTS FA	CULTATIFS	
STATION:	Tunnel Didier	HEURE :	11h00	Code station :	08301101	Réseau :	REF
COMMUNE :	Fort de France	PRELEVEUR:	SCO/HTP	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m) :	200
LOCALISATION :	Tunnel Didier	n° Etude	E2685	X = Y =	705139 1621486		
			I				

Les mesures de distance, de profondeur e	et de vitesse des courants sont des estimations du prél	eveur	
	DESCRIPTION	ON GENERALE	
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE:	étiage
		FACIES D'ECOULEMENTS	
OCCUPATION DU FOND DE VALLEE :	forêt/bois	(Classification de Malavoi) :	plat courant+radier+cascade
		VITESSE DU COURANT	
TRACE DU LIT :	sinueux	sur la station :	5 à 25 cm/s
POLLUTION APPARENTE :		GRANULOMETRIE DOMINANTE sur	Non-Leisense selete Leebles
POLLUTION APPARENTE:	absence	la station :	blocs+pierres, galets+sables
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE :	≤10 %
	·	•	
COULEUR DE L'EAU :	incolore	LARGEUR (m):	4,00
DEPOT SUR LE FOND :	ponctuel		
	OPERATION D	E PRELEVEMENT	
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol
	DESCRIPTION ALL NIV	VEAU DU PRELEVEMENT	
	DESCRIPTION AS NO	TEAG DO FREEEVENERT	
VITESSE DU COURANT au	< 5 cm/s	SUBSTRAT DE PRELEVEMENT :	blocs, pierres
niveau du prélèvement :	1 3 dilys	Nbre de supports prospectés :	10
		au niveau du prélèvement :	
OMBRAGE:	semi-ouvert	PROFONDEUR DE L'EAU (cm) :	25-30
		DISTANCE A LA BERGE (m):	2,00
	PHYSIC	O-CHIMIE	
MESURES DE TERRAIN :			
Température (°C)	22,8 Oxygène (mg/L)	6,99	pH 7,50
	Oxygène (%)	83,00 Conductivité (μS/d	cm) 130,00

RAPPORT FINAL Page 121/216

DEAL de la Martinique
(972)
Suivi DCE 2012
Année 2012

COMMUNE:

FICHE STATION DIATOMEES

Page 1/2 2010

STATION

nº échantillon : CARm5

COURS D'EAU: Carbet DATE: 14/03/2012

STATION: Source Pierrot

Fond St Denis PRELEVEUR: AEG/SCO

HEURE:

n° Etude

11h15

E2685

LOCALISATION : Source Pierrot

012 RENSEIGNEMENTS FACULTATIFS

Code station: 08320101 Réseau: REF

Coordonnées: WGS84 (UMT Nord fuseau 20) Altitude (m): 270

X = 701652 Y = 1629619

1 = 1023

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

	DESCRIPTION	ON GENERALE	
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage
OCCUPATION DU FOND DE VALLEE :	forêt/bois	FACIES D'ECOULEMENTS (Classification de Malavoi) :	plat courant+radier+rapide
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	75 à 150 cm/s
POLLUTION APPARENTE :	macrodéchets du chantier situé en amont	GRANULOMETRIE DOMINANTE sur la station :	blocs+pierres, galets+sables
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE :	≤10 %
COULEUR DE L'EAU :	incolore	LARGEUR (m):	15,00
DEPOT SUR LE FOND :	ponctuel		
	OPERATION D	E PRELEVEMENT	
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol

		DESCRIPTION AU NI	VEAU DU PRELEVEMENT	
VITESSE DU COURANT niveau du prélèvement :	au	75 à 150 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés : au niveau du prélèvement :	blocs, pierres
OMBRAGE:		ouvert	PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	40 7,50

	PHYSICO-CHIMIE		
MESURES DE TERRAIN : Température (°C) 22,6	Oxygène (mg/L) 8,48	рН	8,04
	Oxygène (%) 100,30	Conductivité (µS/cm)	120,00

RAPPORT FINAL Page 122/216

FICHE STATION DIATOMEES

Page 1/2 2010

	STATION										
n° échantillon :	CERm5										
COURS D'EAU :	Anse Céron	DATE:	14/03/2012		RENSEIGNEMENTS FA	CULTATIFS					
STATION:	Habitation Céron	HEURE :	9h15	Code station :	08014101	Réseau :	REF				
COMMUNE :	Le Prêcheur	PRELEVEUR:	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m) :	30				
LOCALISATION :	Habitation Céron	n° Etude	E2685	X = Y =	691809 1640432						

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

	DESCRIPTION	ON GENERALE	
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage
OCCUPATION DU FOND DE VALLEE :	forět/bois	FACIES D'ECOULEMENTS (Classification de Malavoi):	plat courant+radier+rapide+cascade
TRACE DU LIT:	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s
POLLUTION APPARENTE:	absence	GRANULOMETRIE DOMINANTE sur la station :	blocs+pierres, galets+graviers
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE :	≤10 %
COULEUR DE L'EAU :	incolore	LARGEUR (m):	6,00
DEPOT SUR LE FOND :	ponctuel		
	OPERATION DI	E PRELEVEMENT	
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol
	DESCRIPTION AU NIV	EAU DU PRELEVEMENT	
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs, pierres
OMBRAGE:	semi-ouvert	au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) :	30-40
		DISTANCE A LA BERGE (m):	2,50
	PHYSIC	D-CHIMIE	
MESURES DE TERRAIN : Température (°C)	22,7 Oxygène (mg/L) Oxygène (%)	8,36 96,60 Conductivité (µS/	pH 7,95 cm) 140,20

RAPPORT FINAL Page 123/216

DEAL de la Martinique
(972)
Suivi DCE 2012
Année 2012

FICHE STATION DIATOMEES

Page 1/2 2010

	STATION							
n° échantillon :	GALm5							
COURS D'EAU:	Galion	DATE:	15/03/2012		RENSEIGNEMENTS FA	CULTATIFS		
STATION:	Gommier	HEURE :	7h15	Code station :	08221101	Réseau :	REF	
COMMUNE :	Gros Morne	PRELEVEUR:	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m) :	310	
LOCALISATION :	Gommier	n° Etude	E2685	X = Y =	711280 1629504			

Les mesures de distance, de profondeur et	de vitesse des courants sont des estimations du prélev	veur	
	DESCRIPTIO	N GENERALE	
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE:	étiage
			'
_			
OCCUPATION DU FOND DE VALLEE :	forêt/bois+prairie/friche+cultures	FACIES D'ECOULEMENTS (Classification de Malavoi):	plat courant+rapide+cascade
		,	-
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s
l		sur la station :	
POLLUTION APPARENTE :	absence	GRANULOMETRIE DOMINANTE sur	blocs+pierres, galets+graviers
ļ		la station :	
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE :	10 à 25 % (bryophytes)
[
COULEUR DE L'EAU :	il	LARCEUR ()	6.00
COOLEON DE L'EAU :	incolore	LARGEUR (m):	6,00
DEPOT SUR LE FOND :	ponctuel+littorale		
	OPERATION DE	PRELEVEMENT	
ſ			
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol
·			
	DESCRIPTION AU NIV	EAU DU PRELEVEMENT	
h		SUBSTRAT DE PRELEVEMENT :	blocs, pierres
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s	Nbre de supports prospectés :	10
		au niveau du prélèvement :	
,		PROFONDEUR DE L'EAU (cm) :	20-25
OMBRAGE:	semi-ouvert		
•		DISTANCE A LA BERGE (m):	3,00
	PHYSICO	O-CHIMIE CONTRACTOR CO	
MESURES DE TERRAIN :			
Température (°C)	22,3 Oxygène (mg/L)	7,61	pH 7,08
	Overeign (CC)	90,10 Conductivité (µS/c	m) 50.50
	Oxygène (%)	90,10 Conductivité (µS/c	m) 59,50

RAPPORT FINAL Page 124/216

FICHE STATION DIATOMEES

Page 1/2 2010

STATION								
n° échantillon :	GRDm5							
COURS D'EAU:	Grande Rivière	DATE:	13/03/2012	RENSEIGNEMENTS FACULTATIFS				
STATION:	Trou Diablesse	HEURE :	8h00	Code station :	08101101	Réseau :	REF	
COMMUNE :	Grand Rivière	PRELEVEUR:	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m):	45	
LOCALISATION :	Trou Diablesse	n° Etude	E2685	X = Y =	696314 1644060			

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

	DESCRIPTION	ON GENE	RALE	
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage		REGIME HYDRAULIQUE :	étiage
OCCUPATION DU FOND DE VALLEE :	forêt/bois+cultures		FACIES D'ECOULEMENTS (Classification de Malavoi) :	plat courant+rapide+cascade
TRACE DU LIT :	sinueux		VITESSE DU COURANT sur la station :	25 à 75 cm/s
POLLUTION APPARENTE :	absence		GRANULOMETRIE DOMINANTE sur la station :	blocs+pierres,galets+graviers+sables grossiers
ASPECT DE L'EAU :	limpide		VEGETATION AQUATIQUE :	≤10 %
COULEUR DE L'EAU :	incolore		LARGEUR (m):	10,00
DEPOT SUR LE FOND :	absence			
	OPERATION D	E PRELE	VEMENT	
MATERIEL DE PRELEVEMENT :	brosse		Fixateur :	formol
	DESCRIPTION AU NIV	/EAU DU	PRELEVEMENT	
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s		SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs, pierres
OMBRAGE:	semi-ouvert		au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	30-40 3,00
		0.00000		
	PHYSIC	о-снімі	Œ	
MESURES DE TERRAIN : Température (°C)	22,5 Oxygène (mg/L)	8,35		рН 7,90
	Oxygène (%)	96,50	Conductivité (µS/c	: m) 116,00

RAPPORT FINAL Page 125/216

DEAL de la Martinique
(972)
Suivi DCE 2012
Année 2012

FICHE STATION DIATOMEES

Page 1/2 2010

			STATION				
n° échantillon :	LORm5						
COURS D'EAU:	Lorrain	DATE:	19/03/2012	RENSEIGNEMENTS FACULTATIFS			
STATION:	Trace des Jésuites	HEURE :	9h00	Code station :	08201101	Réseau :	REF
COMMUNE :	Le Lorrain	PRELEVEUR:	SCO/HTP	Coordonnées :		Altitude (m) :	300
LOCALISATION :	Trace des Jésuites	n° Etude	E2685	X = Y =	706062 1631107		

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

	DESCRIPTION	ON GENERALE	
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage
OCCUPATION DU FOND DE VALLEE :	forêt/bois	FACIES D'ECOULEMENTS	plat courant+radier+rapide+cascade
		(Classification de Malavoi) :	<u> </u>
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s+ 75 à 150 cm/s
POLLUTION APPARENTE :	absence	GRANULOMETRIE DOMINANTE sur la station :	blocs+pierres, galets+graviers
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE :	≤10 %
COULEUR DE L'EAU :	incolore	LARGEUR (m):	8,00
DEPOT SUR LE FOND :	ponctuel		
	OPERATION D	E PRELEVEMENT	
	OF ERATION D	C PREEEVENEW!	
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol
	DESCRIPTION AU NIV	/EAU DU PRELEVEMENT	
		SUBSTRAT DE PRELEVEMENT :	H
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s	Nbre de supports prospectés :	blocs, pierres
		au niveau du prélèvement :	
		PROFONDEUR DE L'EAU (cm) :	25-40
OMBRAGE:	semi-ouvert	DISTANCE A LA BERGE (m):	4,00
	PHYSIC	O-CHIMIE	
MECUREC DE TERRANA	FHISIC		
MESURES DE TERRAIN : Température (°C)	21,3 Oxygène (mg/L)	6,61	рН 7,57
	Oxygène (%)	75,00 Conductivité (μS/d	2 m) 121,00

RAPPORT FINAL Page 126/216

STATION:

FICHE STATION DIATOMEES

Page 1/2 2010

nº échantillon : PALm5

COURS D'EAU : Lézarde DATE : 15/03/2012

COMMUNE: Gros Morne PRELEVEUR: AEG/SCO

Palourde Lézarde

LOCALISATION: Palourde Lézarde nº Etude E2685

012 RENSEIGNEMENTS FACULTATIFS

Code station: 08501101 Réseau: REF/RCS

Coordonnées: WGS84 (UMT Nord fuseau 20) Altitude (m): 250

X = 709955 Y = 1627908

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

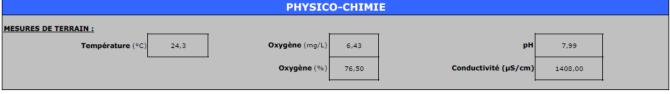
HEURE:

6h30

	DESCRIPTION	ON GENERALE	
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage
OCCUPATION DU FOND DE VALLEE :	forêt/bois+prairie/friche+cultures	FACIES D'ECOULEMENTS (Classification de Malavoi) :	plat courant+radier+rapide+cascade
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s
POLLUTION APPARENTE :	absence	GRANULOMETRIE DOMINANTE sur la station :	blocs+pierres, galets+graviers
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE :	10 à 25 % (bryophytes)
COULEUR DE L'EAU :	incolore	LARGEUR (m):	7,00
DEPOT SUR LE FOND :	littoral		
	ODED ATTOM D	F POEL EVENENT	
	OPERATION DI	E PRELEVEMENT	
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol
•			
	DESCRIPTION AU NIV	EAU DU PRELEVEMENT	
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs, pierres
		au niveau du prélèvement :	
OMBRAGE:	semi-ouvert	PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	25-30 3,50
	PHYSIC	D-CHIMIE	
MESURES DE TERRAIN : Température (°C)	Oxygène (mg/L) Oxygène (%)	8,13 95,10 Conductivité (μS/c	pH 7,22 m) 70,60

RAPPORT FINAL Page 127/216

Suivi DCE 2012 Année 2012 DEAL de la Martinique (972)



FICHE STATION DIATOMEES

Page 1/2 2010

			STATION				
n° échantillon :	PILm5						
COURS D'EAU:	Pilote	DATE:	15/03/2012	RENSEIGNEMENTS FACULTATIFS			
STATION:	Beauregard	HEURE :	9h00	Code station :	08811101	Réseau :	REF
COMMUNE :	Rivière Pilote	PRELEVEUR:	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m) :	40
LOCALISATION :	Beauregard	n° Etude	E2685	X = Y =	729098 1606022		

	DESCRIPTION	ON GENERALE	
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE:	étiage
OCCUPATION DU FOND DE VALLEE :	forêt/bois	FACIES D'ECOULEMENTS (Classification de Malavoi):	plat lentique+rapide
TRACE DU LIT:	sinueux	VITESSE DU COURANT sur la station :	5 à 25 cm/s
POLLUTION APPARENTE :	absence	GRANULOMETRIE DOMINANTE sur la station :	pierres, galets+graviers+sables grossiers
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE :	≤10 %
COULEUR DE L'EAU :	incolore	LARGEUR (m):	3,00
DEPOT SUR LE FOND :	ponctuel (littière végétale)		
	OPERATION D	E PRELEVEMENT	
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol
	DESCRIPTION AU NIV	/EAU DU PRELEVEMENT	
/ITESSE DU COURANT au liveau du prélèvement :	5 à 25 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	cailloux+galets
OMBRAGE:	fermé	au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	42278 1,50
	PHYSIC	O-CHIMIE	
MESURES DE TERRAIN : Température (°C)	24,3 Oxygène (mg/L)	6,43	рН 7,99

RAPPORT FINAL Page 128/216

Suivi DCE 2012 Année 2012 DEAL de la Martinique (972)

FICHE STATION DIATOMEES

Page 1/2 2010

			STATION				
n° échantillon :	VAUm5						
COURS D'EAU:	Vauclin	DATE:	13/03/2012	RENSEIGNEMENTS FACULTATIFS			
STATION:	La Broue	HEURE :	17h00	Code station :	08703101	Réseau :	REF
COMMUNE :	Vauclin	PRELEVEUR:	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m) :	19
LOCALISATION :	La Broue	n° Etude	E2685	X = Y =	730829 1608734		

es mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur							
	DESCRIPTION	ON GENERALE					
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE:	étiage				
		FACIES D'ECOULEMENTS					
OCCUPATION DU FOND DE VALLEE :	forêt/bois+prairie/friche+cultures	(Classification de Malavoi):	mouille de concavité+plat courant+rapide				
TRACE DU LIT :	sinueux	VITESSE DU COURANT	5 à 25 cm/s				
TRACE DO ETT.	Sinceux	sur la station :	5 a 25 cm/s				
POLLUTION APPARENTE :	absence	GRANULOMETRIE DOMINANTE sur la station :	pierres, galets+graviers				
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE:	≤10 %				
COULEUR DE L'EAU :	incolore	LARGEUR (m):	3,00				
DEPOT SUR LE FOND :	ponctuel+littorale (littière végétale)						
	OPERATION D	E PRELEVEMENT					
		Finatoria					
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol				
	DESCRIPTION AU NI	VEAU DU PRELEVEMENT					
VITESSE DU COURANT au niveau du prélèvement :	5 à 25 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	pierres, galets 10				
		au niveau du prélèvement :	20				
		PROFONDEUR DE L'EAU (cm) :	15-20				
OMBRAGE:	semi-ouvert	DISTANCE A LA BERGE (m):	1,50				
	PHYSIC	O-CHIMIE					
MESURES DE TERRAIN :							
Température (°C)	27,2 Oxygène (mg/L)	7,86	рН 8,09				
,	Oppuration (%)	conductivité (uS/	757.00				

RAPPORT FINAL Page 129/216

FICHE STATION DIATOMEES

Page 1/2 2010

STATION							
nº échantillon :	BERm5						
COURS D'EAU :	Ste Marie - Bezaudin	DATE:	13/03/2012		RENSEIGNEMENTS FA	CULTATIFS	
STATION:	Pont RD24 - Ste Marie	HEURE :	14h30	Code station :	08213101	Réseau :	RCS
COMMUNE :	Ste Marie	PRELEVEUR:	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m):	14
LOCALISATION :	Pont RD24 - Ste Marie	nº Etude	E2685	X = Y =	714635 1634170		

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

ces mesures de distance, de profondedir e	DESCRIPTION GENERALE							
	DESCRIPTION	ON GENERALE						
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage					
OCCUPATION DU FOND DE VALLEE :	prairie/friche+cultures	FACIES D'ECOULEMENTS (Classification de Malavoi):	plat courant+radier					
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s					
POLLUTION APPARENTE:	absence	GRANULOMETRIE DOMINANTE sur la station :	pierres, galets+graviers+sables					
ASPECT DE L'EAU :	opalescent(blanchâtre)	VEGETATION AQUATIQUE :	≤10 %					
COULEUR DE L'EAU :	marron	LARGEUR (m):	4-5					
DEPOT SUR LE FOND :	littoral							
	000000000000000000000000000000000000000							
	OPERATION D	E PRELEVEMENT						
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol					
	DESCRIPTION AU NIV	/EAU DU PRELEVEMENT						
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs, pierres					
OMBRAGE:	ouvert	au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	25-30 2,00					
	PHYSIC	O-CHIMIE						
MESURES DE TERRAIN :								
Température (°C)	26,1 Oxygène (mg/L)	8,05	pH 7,85					
	Oxygène (%)	98,60 Conductivité (µS/	cm) 161,40					

RAPPORT FINAL Page 130/216

FICHE STATION DIATOMEES

Page 1/2 2010

STATION							
nº échantillon :	BLAm5						
COURS D'EAU:	Blanche	DATE:	14/03/2012		RENSEIGNEMENTS FA	CULTATIFS	
STATION:	Alma	HEURE :	12h30	Code station :	08511101	Réseau :	RCS
COMMUNE :	St Joseph	PRELEVEUR:	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m) :	511
LOCALISATION :	Alma	n° Etude	E2685	X = Y =	705302 1626424		

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

	DESCRIPTION	ON GENERALE	
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage
OCCUPATION DU FOND DE VALLEE :	forêt/bois	FACIES D'ECOULEMENTS (Classification de Malavoi):	plat courant+rapide+cascade
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s
POLLUTION APPARENTE :	absence	GRANULOMETRIE DOMINANTE sur la station :	blocs+pierres, galets+sables
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE :	≤10 %
COULEUR DE L'EAU :	incolore	LARGEUR (m):	4,00
DEPOT SUR LE FOND :	absence		
	OPERATION D	E PRELEVEMENT	
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol
	DESCRIPTION ALL NIV	/EAU DU PRELEVEMENT	
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs, pierres
OMBRAGE :	ouvert	au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	3,00
	PHYSIC	O-CHIMIE	
MESURES DE TERRAIN : Température (°C)	Oxygène (mg/L) Oxygène (%)		pH 7,80 m) 115,00

RAPPORT FINAL Page 131/216

Suivi DCE 2012 DEAL de la Martinique Année 2012 (972)

STATION:

FICHE STATION DIATOMEES

Page 1/2

2010

nº échantillon : CAFm5

Fond Baise

COURS D'EAU : Carbet DATE: 14/03/2012

COMMUNE: Carbet PRELEVEUR: AEG/SCO

LOCALISATION : Fond Baise n° Etude E2685 RENSEIGNEMENTS FACULTATIFS

Code station: 08322101 Réseau : RCS

Coordonnées: WGS84 (UMT Nord fuseau 20) Altitude (m): 46

X = Y = 1627631

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

HEURE:

7h40

	DESCRIPTIO	ON GENERALE	
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE:	étiage
OCCUPATION DU FOND DE VALLEE :	forêt/bois+prairie/friche	FACIES D'ECOULEMENTS (Classification de Malavoi):	plat courant+rapide
TRACE DU LIT :	rectiligne+île/atteris	VITESSE DU COURANT sur la station :	25 à 75 cm/s
		CDANUS OMETRY PONYMANTE	
POLLUTION APPARENTE :	absence	GRANULOMETRIE DOMINANTE sur la station:	blocs+pierres, galets+graviers
,	1		· · · · · · · · · · · · · · · · · · ·
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE:	≤10 %
_			
COULEUR DE L'EAU :	incolore	LARGEUR (m):	10,00
			-
DEPOT SUR LE FOND :	absence		
	OPERATION DE	PRELEVEMENT	
l		Firehorn	£1
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol
	DESCRIPTION AU NIV	EAU DU PRELEVEMENT	
VITESSE DU COURANT au	25 à 75 cm/s	SUBSTRAT DE PRELEVEMENT :	blocs, pierres
niveau du prélèvement :		Nbre de supports prospectés :	10
		au niveau du prélèvement :	
OMBRAGE:		PROFONDEUR DE L'EAU (cm) :	30-40
OMBRAGE:	ouvert	DISTANCE A LA BERGE (m) :	5,00
	PHYSICO	D-CHIMIE	
	THISTE		
MESURES DE TERRAIN :			
Température (°C)	22,2 Oxygène (mg/L)	8,52	pH 8,04
	Oxygène (%)	97,70 Conductivité (µS/o	:m) 148,00

RAPPORT FINAL Page 132/216

STATION:

COMMUNE :

FICHE STATION DIATOMEES

Page 1/2 2010

		STATION	
CAVm5			
Capot	DATE:	13/03/2012	RENSEIGNEMENTS FACULTATIFS
			CAVm5

10h30

AEG/SCO

LOCALISATION: AEP Vivé Capot nº Etude E2685

AEP Vivé Capot

Lorrain

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

HEURE:

PRELEVEUR:

RENSEIGNEMENTS FACULTATIFS

Code station: 08115101 Réseau: RCS

Coordonnées: WGS84 (UMT Nord fuseau 20) Altitude (m): 50

X = 704821

Y = 1640605

DESCRIPTION GENERALE CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS : étiage (moyennes eaux) REGIME HYDRAULIQUE: étiage (moyennes eaux) FACIES D'ECOULEMENTS OCCUPATION DU FOND DE VALLEE : forêt/bois+prairie/friche plat courant VITESSE DU COURANT TRACE DU LIT : 75 à 150 cm/s sinueux sur la station : GRANULOMETRIE DOMINANTE pierres, galets+graviers+sables grossiers POLLUTION APPARENTE: absence ASPECT DE L'EAU : **VEGETATION AQUATIQUE:** ≤10 % limpide COULEUR DE L'EAU : incolore LARGEUR (m): 20,00 **DEPOT SUR LE FOND:** absence

	OPERATION D	E PRELEVEMENT	
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol
	DESCRIPTION AU NI	VEAU DU PRELEVEMENT	
VITESSE DU COURANT au niveau du prélèvement :	75 à 150 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs, pierres
OMBRAGE:	ouvert	au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	40-50 40667.00
		DISTANCE A LA BERGE (III) :	40007,00

RAPPORT FINAL Page 133/216

FICHE STATION DIATOMEES

Page 1/2 2010

	STATION							
n° échantillon :	CBNm5							
COURS D'EAU:	Case Navire	DATE:	14/03/2012		RENSEIGNEMENTS FA	CULTATIFS		
STATION:	Bourg Schoelcher	HEURE :	6h30	Code station :	08302101	Réseau :	RCS	
COMMUNE :	Schoelcher	PRELEVEUR:	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m) :	8	
LOCALISATION :	Bourg Schoelcher	n° Etude	E2685	X = Y =	704684 1617550			

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

DESCRIPTION GENERALE						
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage			
OCCUPATION DU FOND DE VALLEE :	zone urbaine+prairie/friche	FACIES D'ECOULEMENTS (Classification de Malavoi) :	plat courant + rapides			
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s			
POLLUTION APPARENTE:	macrodéchets	GRANULOMETRIE DOMINANTE sur la station :	blocs+pierres, galets+graviers+sables grossiers			
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE :	≤10 %			
COULEUR DE L'EAU :	incolore	LARGEUR (m):	8,00			
DEPOT SUR LE FOND :	ponctuel (macrodéchets+végétaux)					
MATERIEL DE PRELEVEMENT :	DPERATION D	Fixateur:	formol			
	DESCRIPTION AU NIV	/EAU DU PRELEVEMENT				
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs, pierres			
OMBRAGE:	ouvert	au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	25-40 1,50			
	PHYSIC	О-СНІМІЕ				
MESURES DE TERRAIN : Température (°C)	23,3 Oxygène (mg/L) Oxygène (%)	8,64 100,80 Conductivité (µS/ 0	pH 7,51			

RAPPORT FINAL Page 134/216

FICHE STATION DIATOMEES

Page 1/2 2010

STATION							
n° échantillon :	COPm5						
COURS D'EAU:	Coulisses	DATE:	15/03/2012		RENSEIGNEMENTS FA	CULTATIFS	
STATION:	Petit Bourg	HEURE :	11h00	Code station :	08803101	Réseau :	RCS
COMMUNE :	Rivière Salée	PRELEVEUR:	AEG/SCO	Coordonnées :		Altitude (m):	9
LOCALISATION :	Petit Bourg	n° Etude	E2685	X = Y =	719567 1609275		

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

	DESCRIPTION	ON GENERALE					
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage				
OCCUPATION DU FOND DE VALLEE :	The state of the s	FACIES D'ECOULEMENTS	alst savest				
SCCOPATION DO POND DE VALLEE.	zone urbaine+prairie/friche/cultures	(Classification de Malavoi) :	plat courant				
TRACE DU LIT:	rectiligne	VITESSE DU COURANT sur la station :	5 à 25 cm/s				
POLLUTION APPARENTE:	autres (macrodéchets+érosion)	GRANULOMETRIE DOMINANTE sur la station :	pierres, galets+gravier+limon/argile				
ASPECT DE L'EAU :	turbide	VEGETATION AQUATIQUE:	≤10 %				
COULEUR DE L'EAU :	incolore	LARGEUR (m):	6,00				
DEPOT SUR LE FOND :	colmatage (dépots terreux)						
	OPERATION D	E PRELEVEMENT					
	OPERATION D	E PRELEVEMENT					
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol				
	DESCRIPTION AU NIV	/EAU DU PRELEVEMENT					
		SUBSTRAT DE PRELEVEMENT :	bless siemes				
VITESSE DU COURANT au niveau du prélèvement :	5 à 25 cm/s		blocs, pierres				
invest da pretevenere i		Nbre de supports prospectés :	10				
		au niveau du prélèvement :					
OMBRAGE:	ouvert	PROFONDEUR DE L'EAU (cm) :	30-40				
		DISTANCE A LA BERGE (m):	3,00				
	PHYSIC	O-CHIMIE					
	PHISIC	O CHIMIL					
MESURES DE TERRAIN : Température (°C)	26,5 Oxygène (mg/L)	8,43	рН 7,86				
remperature (*C)	Oxygène (%)						
	Oxygene (%)	103,70 Conductivité (µS/d	360,00				

RAPPORT FINAL Page 135/216

DEAL de la Martinique
(972)
Suivi DCE 2012
Année 2012

FICHE STATION DIATOMEES

Pa	ige	1/2	
	20:	10	

STATION							
nº échantillon :	DCSm5						
COURS D'EAU:	Deux Courants	DATE:	13/03/2012		RENSEIGNEMENTS FA	CULTATIFS	
STATION:	Pont Seraphin	HEURE :	16h00	Code station :	08616101	Réseau :	RCS
COMMUNE:	François	PRELEVEUR:	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m) :	7
LOCALISATION :	Pont Seraphin	n° Etude	E2685	X = Y =	725931 1616649		

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

	DESCRIPT	ION GENE	RALE		
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage		REGIME HYDRAULIQUE :	étiage	
OCCUPATION DU FOND DE VALLEE :	zone urbaine+cultures		FACIES D'ECOULEMENTS (Classification de Malavoi) :	chenal lenti	que
TRACE DU LIT :	rectiligne		VITESSE DU COURANT sur la station :	< 5 cm/:	5
POLLUTION APPARENTE :	irrisation		GRANULOMETRIE DOMINANTE sur la station :	limons+argiles	+vase
ASPECT DE L'EAU :	turbide		VEGETATION AQUATIQUE :	≤10 %	
COULEUR DE L'EAU :	marron		LARGEUR (m):	6,00	
DEPOT SUR LE FOND :	colmatage				
	OPERATION	DE DDELE	VEMENT		
MATERIEL DE PRELEVEMENT :	brosse		Fixateur :	formol	
	DESCRIPTION AU N	IVEAU DU	PRELEVEMENT		
VITESSE DU COURANT au niveau du prélèvement :	< 5 cm/s		SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs moye	ens
OMBRAGE:	ouvert		au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	30-35	
	PHYS	СО-СНІМ	TE .		
MESURES DE TERRAIN : Température (°C)	28,3 Oxygène (mg,		Ī	эн 8,02	
Temperature (*C)	Oxygène (1		Conductivité (µS/cr		

RAPPORT FINAL Page 136/216

Suivi DCE 2012 DEAL de la Martinique (972)Année 2012

COMMUNE :

FICHE STATION DIATOMEES

Page 1/2 2010

S	ГΔ	Т	T	O I	V.
_			-	-	ч.

nº échantillon : GAGm5

COURS D'EAU : Galion

DATE: 13/03/2012

HEURE:

STATION: Grand Galion

Trinité

LOCALISATION : Grand Galion

PRELEVEUR: AEG/SCO

15h00

n° Etude E2685 RENSEIGNEMENTS FACULTATIFS


Code station: 08225101 Réseau: RCS

WGS84 (UMT Nord fuseau 20) Altitude (m): 8 Coordonnées :

X = Y = 719613 1628015

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

DESCRIPTION GENERALE							
CONDITIONS HYDROLOGIQUES DES							
15 JOURS PRECEDENTS :	moyennes eaux	REGIME HYDRAULIQUE :	moyennes eaux				
OCCUPATION DU FOND DE VALLEE :	cultures (bananes)	FACIES D'ECOULEMENTS (Classification de Malavoi):	plat courant				
		(classification de Maiavol) .					
		VITESSE DU COURANT					
TRACE DU LIT :	sinueux	sur la station :	25 à 75 cm/s				
POLLUTION APPARENTE :	Macrodéchets + autres (pollution terrigène :	GRANULOMETRIE DOMINANTE SE					
	érosion)	la station :	galets+gravier+sables+limons+argiles				
,							
ASPECT DE L'EAU :	turbide	VEGETATION AQUATIQUE:	≤10 %				
COULEUR DE L'EAU :	marron/vert	LARGEUR (m):	8,00				
COULTR DE L'ENO .	marrony verc	EARGEON (III)	5,00				
DEPOT SUR LE FOND :	colmatage						
		<u>'</u>					
	OPERATION D	E PRELEVEMENT					
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol				
	5.032						
	DESCRIPTION AU NIV	/EAU DU PRELEVEMENT					
VITESSE DU COURANT au		SUBSTRAT DE PRELEVEMENT :	cailloux + pierres				
niveau du prélèvement :	25 à 75 cm/s	Nbre de supports prospectés :	12				
		au niveau du prélèvement :					
OMBRAGE :	ouvert	PROFONDEUR DE L'EAU (cm) :	20-25				
,		DISTANCE A LA BERGE (m):	3,50				

RAPPORT FINAL Page 137/216 DEAL de la Martinique
(972)
Suivi DCE 2012
Année 2012

FICHE STATION DIATOMEES

Page 1/2 2010

STATION							
n° échantillon :	GRSm5						
COURS D'EAU:	Grande Rivière	DATE:	13/03/2012		RENSEIGNEMENTS FAC	CULTATIFS	
STATION:	Stade	HEURE :	8h45	Code station :	08102101	Réseau :	RCS
COMMUNE :	Grande Rivière	PRELEVEUR:	AEG/SCO	Coordonnées :		Altitude (m) :	30
LOCALISATION :	Stade	n° Etude	E2685	X = Y =	696250 1644420		

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

	DESCRIPTION	ON GENE	RALE					
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage		REGIME HYDRAULIQUE :	étiage				
OCCUPATION DU FOND DE VALLEE :	forêt/bois+prairie/friche		FACIES D'ECOULEMENTS (Classification de Malavoi) :	plat lentique+plat courant+radier+cascade+rapide				
TRACE DU LIT:	sinueux		VITESSE DU COURANT sur la station :	25 à 75 cm/s				
POLLUTION APPARENTE:	absence		GRANULOMETRIE DOMINANTE sur la station :	blocs+pierres, galets+graviers				
ASPECT DE L'EAU :	limpide		VEGETATION AQUATIQUE:	≤10 %				
COULEUR DE L'EAU :	incolore		LARGEUR (m):	15,00				
DEPOT SUR LE FOND :	absence (1 peu de littière végétale en bordure)							
	OPERATION D	E PRELE	VEMENT					
MATERIEL DE PRELEVEMENT :	brosse		Fixateur :	formol				
	DESCRIPTION AND AND	/=						
	DESCRIPTION AU NIV	EAU DU	PRELEVEMENT					
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s		SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs, pierres				
OMBRAGE :	semi-ouvert		au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) :	40-50				
			DISTANCE A LA BERGE (m):	5,00				
	DHACTO	0-СНІМІ	TE .					
	PHYSIC	O-CHIMI	· E					
MESURES DE TERRAIN : Température (°C)	22,6 Oxygène (mg/L)	8,42		pH 7,88				
	Oxygène (%)	97,60	Conductivité (µS/d	cm) 122,00				

RAPPORT FINAL Page 138/216

DEAL de la Martinique

(972)

Suivi DCE 2012

Année 2012

FICHE STATION DIATOMEES

Page 1/2 2010

STATION							
nº échantillon :	LEGm5						
COURS D'EAU:	Lézarde	DATE:	15/03/2012		RENSEIGNEMENTS FA	CULTATIFS	
STATION:	Gué de la Désirade	HEURE :	12h45	Code station :	08521101	Réseau :	RCS
COMMUNE :	Lamentin	PRELEVEUR:	AEG/SCO	Coordonnées : X =	WGS84 (UMT Nord fuseau 20) 715810	Altitude (m) :	35
LOCALISATION :	Gué de la Désirade	n° Etude	E2685	Y =	1622384		

DESCRIPTION	ON GENERALE	
étiage	REGIME HYDRAULIQUE :	étiage
prairie/friche+cultures (bananes)	FACIES D'ECOULEMENTS (Classification de Malavoi):	plat courant+rapide
sinueux	VITESSE DU COURANT sur la station :	75 à 150 cm/s
absence	GRANULOMETRIE DOMINANTE sur la station :	blocs+pierres, galets+graviers
limpide	VEGETATION AQUATIQUE :	≤10 %
incolore	LARGEUR (m):	25,00
littoral		
OPERATION D	F PRELEVEMENT	
brosse	Fixateur :	formol
DESCRIPTION AU NIV	/EAU DU PRELEVEMENT	
75 à 150 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs, pierres
ouvert	au niveau du prelèvement : PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	30 2,00
DHACTO	O CUIMITE	
4 Oxygène (mg/L)		рН 8,10
	étiage prairie/friche+cultures (bananes) sinueux absence limpide incolore littoral OPERATION D brosse DESCRIPTION AU NIV 75 à 150 cm/s ouvert	prairie/friche+cultures (bananes) FACIES D'ECOULEMENTS (Classification de Malavol): VITESSE DU COURANT sur la station: Sur la station: Impide VEGETATION AQUATIQUE: Incolore LARGEUR (m): DESCRIPTION AU NIVEAU DU PRELEVEMENT To à 150 cm/s PHYSICO-CHIMIE PHYSICO-CHIMIE Oxygène (mg/L) 8,34

RAPPORT FINAL Page 139/216

FICHE STATION DIATOMEES

Page 1/2 2010

STATION							
nº échantillon :	LEPm5						
COURS D'EAU:	Lézarde	DATE:	15/03/2012		RENSEIGNEMENTS FA	CULTATIFS	
STATION:	Pont RN1	HEURE :	14h30	Code station :	08521102	Réseau :	RCS
COMMUNE :	Lamentin	PRELEVEUR:	AEG/SCO	Coordonnées : X =	WGS84 (UMT Nord fuseau 20) 716980	Altitude (m) :	12
LOCALISATION :	Pont RN1	n° Etude	E2685	Y =	1617085		
LOCALIDATION .		. Lude			1017000		

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur								
	DESCRIPTION	ON GENE	RALE					
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage		REGIME HYDRAULIQUE:	étiage				
			•					
			ŗ					
OCCUPATION DU FOND DE VALLEE :	zone urbaine+cultures		FACIES D'ECOULEMENTS (Classification de Malavoi) :	plat courant				
			VITESSE DU COURANT					
TRACE DU LIT :	sinueux		sur la station :	75 à 150 cm/s				
			GRANULOMETRIE DOMINANTE sur					
POLLUTION APPARENTE:	absence		la station :	pierres, galets+graviers				
ACDECT DE L'EAU.	btide		VECETATION AQUATIQUE.	110.00				
ASPECT DE L'EAU :	turbide		VEGETATION AQUATIQUE:	≤10 %				
COULEUR DE L'EAU :	incolore		LARGEUR (m):	10,00				
				20,00				
DEPOT SUR LE FOND :	littoral (feuilles+dépots terreux)							
	OPERATION D	E PRELE	VEMENT					
	OF ERATION D	LPREEL	VEHENI					
MATERIEL DE PRELEVEMENT :	brosse		Fixateur :	formol				
	DESCRIPTION AU NIV	/EAU DU	PRELEVEMENT					
VITESSE DU COURANT au			SUBSTRAT DE PRELEVEMENT :	blocs, pierres				
niveau du prélèvement :	75 à 150 cm/s		Nbre de supports prospectés :	10				
			au niveau du prélèvement :					
			PROFONDEUR DE L'EAU (cm) :	30-40				
OMBRAGE:	ouvert		DISTANCE A LA BERGE (m):	5,00				
				l				
	PHYSIC	о-снімі	Œ					
MESURES DE TERRAIN :								
Température (°C)	27,9 Oxygène (mg/L)	7,95		pH 7,56				
	Overadna (%)	100.60	Conductivité (µS/c	m) 145.00				
	Oxygène (%)	100,60	Conductivite (µS/c	m) 145,00				

RAPPORT FINAL Page 140/216

FICHE STATION DIATOMEES

Page 1/2 2010

STATION							
nº échantillon :	LOPm5						
COURS D'EAU:	Lorrain	DATE:	13/03/2012		RENSEIGNEMENTS FAC	ULTATIFS	
STATION:	Amont Pirogue	HEURE :	11h30	Code station :	08203101	Réseau :	RCS
COMMUNE :	Lorrain	PRELEVEUR:	AEG/SCO			Altitude (m) :	120
LOCALISATION :	Amont Pirogue	n° Etude	E2685	X = Y =	709348 1634935		
			l				

		·	•					
Les mesures de distance, de profondeur e	et de vitesse des courants sont des estimations du prél	eveur						
DESCRIPTION GENERALE								
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage					
OCCUPATION DU FOND DE VALLEE :	forêt/bois	FACIES D'ECOULEMENTS (Classification de Malavoi):	plat courant+radier					
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s					
POLLUTION APPARENTE :	absence	GRANULOMETRIE DOMINANTE sur la station :	blocs+pierres, galets+sables grossiers					
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE:	≤10 %					
COULEUR DE L'EAU :	incolore	LARGEUR (m):	25,00					
DEPOT SUR LE FOND :	absence							
	OPERATION D	E PRELEVEMENT						
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol					
	DESCRIPTION AU NI	VEAU DU PRELEVEMENT						
		SUBSTRAT DE PRELEVEMENT :	blocs, pierres					
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s	Nbre de supports prospectés :	10					
		au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) :	30-40					
OMBRAGE:	ouvert	DISTANCE A LA BERGE (m):	10,00					
	PHYSIC	O-CHIMIE						
MESURES DE TERRAIN : Température (°C)	23,4 Oxygène (mg/L)	8,32	рН 7,60					
	Oxygène (%)	98,50 Conductivité (µS/d	c m) 95,00					

RAPPORT FINAL Page 141/216

FICHE STATION DIATOMEES

Page 1/2 2010

STATION							
nº échantillon :	LOSm5						
COURS D'EAU:	Lorrain	DATE:	13/03/2012		RENSEIGNEMENTS FA	CULTATIFS	
STATION:	Seguineau - amont pont RN1	HEURE :	12h00	Code station :	08205101	Réseau :	RCS
COMMUNE :	Lorrain	PRELEVEUR:	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m):	10
LOCALISATION :	Seguineau - amont pont RN1	n° Etude	E2685	X = Y =	710369 1639761		

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

	DESCRIPTION	ON GENERALE	
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	étiage REGIME HYDRAULIQUE :	
OCCUPATION DU FOND DE VALLEE :	forêt/bois+cultures	FACIES D'ECOULEMENTS	plat courant
OCCUPATION DU FOND DE VALLEE :	Toret/ Bois+Cultures	(Classification de Malavoi) :	plat courant
	<u> </u>	VITESSE DU COURANT	
TRACE DU LIT :	sinueux	sur la station :	25 à 75 cm/s
		,	•
POLLUTION APPARENTE :	absence	GRANULOMETRIE DOMINANTE sur	blocs+pierres, galets+sable grossier
		la station :	en bordure
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE:	≤10 %
COULEUR DE L'EAU :	incolore	LARGEUR (m):	25,00
DEPOT SUR LE FOND :	littoral		
	OPERATION D	E PRELEVEMENT	
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol
	DESCRIPTION AU NI	/EAU DU PRELEVEMENT	
VITESSE DU COURANT au	25.75	SUBSTRAT DE PRELEVEMENT :	blocs, pierres
niveau du prélèvement :	25 à 75 cm/s	Nbre de supports prospectés :	10
		au niveau du prélèvement :	
		PROFONDEUR DE L'EAU (cm) :	30-40
OMBRAGE:	ouvert		
		DISTANCE A LA BERGE (m):	5,00
	PHYSIC	O-CHIMIE	
MESURES DE TERRAIN :			
Température (°C)	26,1 Oxygène (mg/L)	8,17	pH 7,79
	Oxygène (%)	100,10 Conductivité (µS/d	cm) 104,00

RAPPORT FINAL Page 142/216

DEAL de la Martinique
(972)
Suivi DCE 2012
Année 2012

LOCALISATION : Pont de Chaîne

FICHE STATION DIATOMEES

Page 1/2 2010

STATION							
n° échantillon :	MACm5						
COURS D'EAU:	Madame	DATE:	14/03/2012		RENSEIGNEMENTS FA	CULTATIFS	
STATION:	Pont de chaîne	HEURE :	13h15	Code station :	08423101	Réseau :	RCS
OMMUNE :	Fort de France	PRELEVEUR :	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m):	18

X = Y = 707832

1617079

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

nº Etude

E2685

	DESCRIPT	ION GENERALE	
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage
OCCUPATION DU FOND DE VALLEE :	zone urbaine FACIES D'ECOULEMENTS (Classification de Malavoi):		plat courant
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s
POLLUTION APPARENTE :	macrodéchets	GRANULOMETRIE DOMINANTE sur la station :	blocs+pierres, galets+argiles
ASPECT DE L'EAU :	légèrement turbide	VEGETATION AQUATIQUE :	≤10 %
COULEUR DE L'EAU :	incolore	LARGEUR (m):	8,00
DEPOT SUR LE FOND :	colmatage (dépots terreux+organiques)		
MATERIEL DE PRELEVEMENT :	OPERATION brosse	DE PRELEVEMENT Fixateur :	formol
		_	
	DESCRIPTION AU N	IVEAU DU PRELEVEMENT	
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs, pierres
OMBRAGE:	ouvert	au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	30-35 4,00
		DASTRICE A EN DERGE (III)	-1/04
	PHYSI	СО-СНІМІЕ	
MESURES DE TERRAIN :			
Température (°C)	26,6 Oxygène (mg/l	L) 7,71	pH 7,76

Oxygène (%)

96,20

RAPPORT FINAL Page 143/216

Conductivité (µS/cm)

355,00

FICHE STATION DIATOMEES

Page 1/2 2010

STATION							
n° échantillon :	MOMm5						
COURS D'EAU:	Monsieur	DATE:	14/03/2012		RENSEIGNEMENTS FA	CULTATIFS	
STATION:	Pont Mongérald	HEURE :	14h00	Code station :	08412102	Réseau :	RCS
COMMUNE :	Fort de France	PRELEVEUR:	AEG/SCO	Coordonnées : X =	WGS84 (UMT Nord fuseau 20) 710294	Altitude (m):	12
LOCALISATION :	Pont Mongérald	n° Etude	E2685	X = Y =	1616830		
			l				

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

tes mesures de distance, de provincial et de vicesse des contents sont des estimations du prefered.							
	DESCRIPTION	ON GENERALE					
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage				
		FACIES D'ECOULEMENTS					
OCCUPATION DU FOND DE VALLEE :	zone urbaine+cultures	(Classification de Malavoi) :	plat courant				
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s				
POLLUTION APPARENTE:	odeur chimique	GRANULOMETRIE DOMINANTE sur la station :	pierres, galets+graviers+ sables grossiers				
ASPECT DE L'EAU :	opalescente	VEGETATION AQUATIQUE:	≤10 %				
COULEUR DE L'EAU :	incolore	LARGEUR (m):	6,00				
DEPOT SUR LE FOND :	littoral						
	OPERATION D	E PRELEVEMENT					
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol				
	DESCRIPTION AU NI	/EAU DU PRELEVEMENT					
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs, pierres				
		au niveau du prélèvement :					
OMBRAGE:	ouvert	PROFONDEUR DE L'EAU (cm) :	40-50				
		DISTANCE A LA BERGE (m):	2,00				
PHYSICO-CHIMIE							
MESURES DE TERRAIN :							
Température (°C)	27,7 Oxygène (mg/L)	7,58	pH 7,35				
	Oxygène (%)	95,50 Conductivité (µS/d					

RAPPORT FINAL Page 144/216

DEAL de la Martinique
(972)
Suivi DCE 2012
Année 2012

FICHE STATION DIATOMEES

Page 1/2 2010

STATION							
n° échantillon :	OMDm5						
COURS D'EAU:	Oman	DATE:	15/03/2012	RENSEIGNEMENTS FACULTATIFS			
STATION:	Dormante	HEURE :	10h40	Code station :	08824101	Réseau :	RCS
COMMUNE :	Ste Luce	PRELEVEUR:	AEG/SCO	Coordonnées :		Altitude (m):	9
LOCALISATION :	Dormante	n° Etude	E2685	X = Y =	719762 1602722		

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

	DESCRIPTIO	ON GENERALE				
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE:	étiage			
OCCUPATION DU FOND DE VALLEE :	forêt/bois+prairie/friche/cultures	FACIES D'ECOULEMENTS (Classification de Malavoi):	plat courant			
TRACE DU LIT:	sinueux	VITESSE DU COURANT sur la station :	5 à 25 cm/s			
POLLUTION APPARENTE:	absence	GRANULOMETRIE DOMINANTE sur la station :	pierres, galets+graviers			
ASPECT DE L'EAU :	turbide	VEGETATION AQUATIQUE:	≤10 %			
COULEUR DE L'EAU :	incolore	LARGEUR (m):	3,00			
DEPOT SUR LE FOND :	litière végétale					
	OPERATION DE	E PRELEVEMENT				
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol			
	DESCRIPTION AU NIV	EAU DU PRELEVEMENT				
VITESSE DU COURANT au niveau du prélèvement :	5 à 25 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	cailloux 10			
OMBRAGE:	semi-ouvert (fermé)	au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	15-20 1,50			
	PHYSICO	D-CHIMIE				
MESURES DE TERRAIN : Température (°C)	24,7 Oxygène (mg/L)	7,46	pH 7,60			
	Oxygène (%)	88,80 Conductivité (µS/d	cm) 586,00			

RAPPORT FINAL Page 145/216

DEAL de la Martinique
(972)
Suivi DCE 2012
Année 2012

FICHE STATION DIATOMEES

Page 1/2 2010

	STATION						
nº échantillon :	PALm5						
COURS D'EAU:	Lézarde	DATE:	15/03/2012		RENSEIGNEMENTS FAC	CULTATIFS	
STATION:	Palourde Lézarde	HEURE :	6h30	Code station :	08501101	Réseau :	REF/RCS
COMMUNE :	Gros Morne	PRELEVEUR:	AEG/SCO	Coordonnées :		Altitude (m) :	250
LOCALISATION :	Palourde Lézarde	n° Etude	E2685	X = Y =	709955 1627908		

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

to meaning at grounds at at meaning and common and at profession						
	DESCRIPTION	ON GENERALE				
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage			
		FACIES D'ECOULEMENTS				
OCCUPATION DU FOND DE VALLEE :	forêt/bois+prairie/friche+cultures	(Classification de Malavoi) :	plat courant+radier+rapide+cascade			
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s			
POLLUTION APPARENTE:	absence	GRANULOMETRIE DOMINANTE sur la station :	blocs+pierres, galets+graviers			
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE :	10 à 25 % (bryophytes)			
COULEUR DE L'EAU :	incolore	LARGEUR (m):	7,00			
DEPOT SUR LE FOND :	littoral					
	ODERATION D	E PRELEVEMENT				
	OPERATION D	E PRELEVEMENT				
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol			
	DESCRIPTION AU NIV	VEAU DU PRELEVEMENT				
			Γ			
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs, pierres			
		au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) :	25-30			
OMBRAGE:	semi-ouvert	DISTANCE A LA BERGE (m):	3,50			
	PHYSIC	O-CHIMIE				
MESURES DE TERRAIN :						
Température (°C)	22,0 Oxygène (mg/L)	8,13	pH 7,22			
	Oxygène (%)	95,10 Conductivité (μS/	cm) 70,60			

RAPPORT FINAL Page 146/216

FICHE STATION DIATOMEES

Page 1/2 2010

STATION							
n° échantillon :	PIAm5						
COURS D'EAU:	Pilote	DATE:	15/03/2012	RENSEIGNEMENTS FACULTATIFS			
STATION:	Amont bourg	HEURE :	9h30	Code station :	08813102	Réseau :	RCS
COMMUNE :	Rivière Pilote	PRELEVEUR:	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m):	0
LOCALISATION :	Amont bourg	nº Etude	E2685	X = Y =	0		

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

	DESCRIPTION	ON GENE	RALE				
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage		REGIME HYDRAULIQUE :	étiage			
OCCUPATION DU FOND DE VALLEE :	prairie/friche/cultures		FACIES D'ECOULEMENTS (Classification de Malavoi) :	plat courant+	radier		
TRACE DU LIT :	sinueux		VITESSE DU COURANT sur la station :	5 à 25 cm	/s		
POLLUTION APPARENTE :	autres (macrodéchets = pylone en béton)		GRANULOMETRIE DOMINANTE sur la station :	pierres, gal	ets		
ASPECT DE L'EAU :	limpide		VEGETATION AQUATIQUE :	≤10 %			
COULEUR DE L'EAU :	incolore		LARGEUR (m):	4,00			
'					1		
,							
DEPOT SUR LE FOND :	ponctuel + littoral						
	OPERATION D	F DRELE	VEMENT				
	OF ERATION D	LFREEL	VEHICIVI				
MATERIEL DE PRELEVEMENT :	brosse		Fixateur :	formol			
'							
	DESCRIPTION AU NIV	/EALL DII	DDELEVEMENT				
	DESCRIPTION AC NIT	ZAO DO	- RESEVENSIVI				
VITESSE DU COURANT au			SUBSTRAT DE PRELEVEMENT :	blocs, pierres +	cailloux		
niveau du prélèvement :	5 à 25 cm/s		Nbre de supports prospectés :	10			
			au niveau du prélèvement :				
OMBRAGE:	ouvert		PROFONDEUR DE L'EAU (cm) :	20-30			
			DISTANCE A LA BERGE (m):	2,00			
	PHYSICO-CHIMIE						
MESURES DE TERRAIN :			ī				
Température (°C)	25,4 Oxygène (mg/L)	7,95		pH 7,85			
	Oxygène (%)	96,20	Conductivité (µS/c	cm) 709,00			

RAPPORT FINAL Page 147/216

DEAL de la Martinique

(972)

Suivi DCE 2012

Année 2012

FICHE STATION DIATOMEES

Page 1/2 2010

STATION							
n° échantillon :	PIMm5						
COURS D'EAU:	Petite Pilote	DATE:	15/03/2012	RENSEIGNEMENTS FACULTATIFS			
STATION:	Pont Madeleine	HEURE :	10h00	Code station :	08812101	Réseau :	RCS
COMMUNE :	Rivière Pilote	PRELEVEUR:	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m):	0
LOCALISATION :	Pont Madeleine	n° Etude	E2685	X = Y =	0		
			ı				

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur							
	DESCRIPTION	ON GENERALE					
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage				
OCCUPATION DU FOND DE VALLEE :	zone urbaine+forêt/bois+prairie/friche	FACIES D'ECOULEMENTS (Classification de Malavoi):	plat courant+radier				
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	5 à 25 cm/s				
POLLUTION APPARENTE:	écume+macrodéchets	GRANULOMETRIE DOMINANTE sur la station :	pierres, galets+graviers				
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE :	≤10 %				
COULEUR DE L'EAU :	incolore	LARGEUR (m):	6,00				
DEPOT SUR LE FOND :	littoral						
	OPERATION D	E PRELEVEMENT					
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol				
	DESCRIPTION AU NIV	/EAU DU PRELEVEMENT					
VITESSE DU COURANT au niveau du prélèvement :	5 à 25 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés : au niveau du prélèvement :	blocs, pierres				
OMBRAGE:	ouvert	PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	20				
	PHYSICO-CHIMIE						
MESURES DE TERRAIN : Température (°C) 26,1 Oxygène (mg/L) 7,96 pH 7,94 Oxygène (%) 97,40 Conductivité (μS/cm) 413,00							

RAPPORT FINAL Page 148/216

FICHE STATION DIATOMEES

Page 1/2 2010

nº échantillon : PLBm5

COURS D'EAU: Petite Lézarde DATE: 15/03/2012

STATION: Pont Belle Île HEURE: 13h00

COMMUNE: Lamentin PRELEVEUR: AEG/SCO

LOCALISATION: Pont Belle Île nº Etude E2685

RENSEIGNEMENTS FACULTATIFS

Code station: 08504101 Réseau: RCS

Coordonnées: WGS84 (UMT Nord fuseau 20) Altitude (m): 54

X = 716067 Y = 1623401

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

DESCRIPTION GENERALE					
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage		
OCCUPATION DU FOND DE VALLEE :	forêt/bois+prairie/friche+cultures (bananes)	FACIES D'ECOULEMENTS (Classification de Malavoi) :	plat courant+rapide		
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s		
POLLUTION APPARENTE :	Macrodéchets+autres (dépots terreux-érosion agricole importante)	GRANULOMETRIE DOMINANTE sur la station :	pierres, galets+sables+limons+argiles		
ASPECT DE L'EAU :	laiteuse	VEGETATION AQUATIQUE:	≤10 %		
COULEUR DE L'EAU :	incolore	LARGEUR (m):	6-7		
DEPOT SUR LE FOND :	colmatage (forts dépots littoraux)				
	ODEDATION D				
MATERIEL DE PRELEVEMENT :	brosse	Fixateur:	formol		
	DESCRIPTION AU NIV	/EAU DU PRELEVEMENT			
VITESSE DU COURANT au niveau du prélèvement :	25 à 75 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés :	blocs, pierres		
OMBRAGE:	ouvert	au niveau du prélèvement : PROFONDEUR DE L'EAU (cm) :	25-30		
		DISTANCE A LA BERGE (m):	3,50		
	PHYSIC	O-CHIMIE			
MESURES DE TERRAIN :					
Température (°C)	25,0 Oxygène (mg/L) Oxygène (%)	7,37 88,80 Conductivité (µS/	pH 7,40 cm) 166,00		

RAPPORT FINAL Page 149/216

COMMUNE:

Lamentin

LOCALISATION : Brasserie Lorraine

MATERIEL DE PRELEVEMENT :

FICHE STATION DIATOMEES

Page 1/2 2010

Altitude (m): 15

formol

WGS84 (UMT Nord fuseau 20)

718198

1617816

x = y =

			STATION				
n° échantillon :	PRBm5						
OURS D'EAU:	Petite Rivière	DATE:	15/03/2012		RENSEIGNEMENTS FACU	ILTATIFS	
TATION:	Brasserie Lorraine	HEURE :	14h00	Code station :	08533101	Réseau :	RCS

AEG/SCO

E2685

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

PRELEVEUR:

brosse

n° Etude

	DESCRIPTION GENERALE							
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE :	étiage					
OCCUPATION DU FOND DE VALLEE :	prairie/friche+culture (bananes)	FACIES D'ECOULEMENTS (Classification de Malavoi):	plat courant+rapide					
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s					
POLLUTION APPARENTE :	qqes macrodéchets	GRANULOMETRIE DOMINANTE sur la station :	pierres, galets+gravier+sables					
ASPECT DE L'EAU :	légèrement trouble	VEGETATION AQUATIQUE :	≤10 %					
COULEUR DE L'EAU :	incolore	LARGEUR (m):	4,00					
DEPOT SUR LE FOND :	littoral (dépots terreux dus à l'érosion agricole)							
DEPOT SUR LE FOND :	littoral (dépots terreux dus à l'érosion agricole)							

		DESCRIPTION AU NI	VEAU DU PRELEVEMENT	
VITESSE DU COURANT niveau du prélèvement :	au	75 à 150 cm/s	SUBSTRAT DE PRELEVEMENT : Nbre de supports prospectés : au niveau du prélèvement :	blocs, pierres
OMBRAGE:		ouvert	PROFONDEUR DE L'EAU (cm) : DISTANCE A LA BERGE (m) :	2,00

OPERATION DE PRELEVEMENT

Fixateur:

PHYSICO-CHIMIE										
JRES DE TERRAIN :										
Température (°C) 27,5 Oxygène (mg/L) 8,56	рН 7,98									
Oxygène (%) 107,70	Conductivité (µS/cm) 471,00									
Oxygène (%) 107,70	Conductivité (µS/cm) 471,00									

RAPPORT FINAL Page 150/216

FICHE STATION DIATOMEES

Page 1/2 2010

			STATION				
n° échantillon :	ROSm5						
COURS D'EAU :	Roxelane	DATE:	14/03/2012		RENSEIGNEMENTS FA	CULTATIFS	
STATION:	Ancien Pont	HEURE :	11h00	Code station :	08329101	Réseau :	RCS
COMMUNE :	St Pierre	PRELEVEUR:	AEG/SCO	Coordonnées :	WGS84 (UMT Nord fuseau 20)	Altitude (m) :	7
LOCALISATION :	Ancien Pont	n° Etude	E2685	X = Y =	696189 1631359		

Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du préleveur

Les mesures de distance, de profondeur el	t de vitesse des courants sont des estimations du prei	Les mesures de distance, de profondeur et de vitesse des courants sont des estimations du preleveur												
	DESCRIPTION	ON GENERALE												
CONDITIONS HYDROLOGIQUES DES 15 JOURS PRECEDENTS :	étiage	REGIME HYDRAULIQUE:	étiage											
OCCUPATION DU FOND DE VALLEE :	zone urbaine+prairie/friche	FACIES D'ECOULEMENTS (Classification de Malavoi) :	radier+rapide											
TRACE DU LIT :	sinueux	VITESSE DU COURANT sur la station :	25 à 75 cm/s											
POLLUTION APPARENTE:	autres (beaucoup de macrodéchets)	GRANULOMETRIE DOMINANTE sur la station :	blocs+pierres, galets+graviers											
ASPECT DE L'EAU :	limpide	VEGETATION AQUATIQUE :	≤10 %											
COULEUR DE L'EAU :	incolore	LARGEUR (m):	8,00											
DEPOT SUR LE FOND :	ponctuel													
	OPERATION D	E PRELEVEMENT												
MATERIEL DE PRELEVEMENT :	brosse	Fixateur :	formol											
	DESCRIPTION AU NI	/EAU DU PRELEVEMENT												
VITESSE DU COURANT au		SUBSTRAT DE PRELEVEMENT :	blocs, pierres											
niveau du prélèvement :	25 à 75 cm/s	Nbre de supports prospectés :	10											
		au niveau du prélèvement :	1											
OMBRAGE:	ouvert	25-30												
		DISTANCE A LA BERGE (m):	4,00											

PHYSICO-CHIMIE MESURES DE TERRAIN : Température (°C) 24,9 Oxygène (mg/L) 8,25 pH 8,16 Oxygène (%) 98,90 Conductivité (μS/cm) 208,00

Annexe 3 : Diatomées

RAPPORT FINAL Page 151/216

DEAL de la Martinique

(972)

Suivi DCE 2012

Année 2012

N°PREP
BASSIN
SITE
RIVIERE
DATE
CODE HYDROLOGIQUE
PARTICULARITES E2685

2012009000 MARTINIQUE STADE DE GRAND RIVIERE GRANDE RIVIERE 13/03/2012 08102101

IPS	SLA		IDAP				WAT	
18,3	13,5	13,3	5,8	6,5	0,0	11,8	14,4	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
58,2	18,2	5,6	8,4	9,0	17,4	11,6	4,0	

NOTES DE QUALITE / 20

	NB d'es	pèces Effectif	29 401	1	Diversité uitabilité	3,07 0,63		Nombre de genres	15		
Nombi	e o/oo	Code	ou	Désignation				*	: taxon IBD	IPS S	IPS V
	399,00	ADSH	-	Achnanthidium sul	bhudsonis (Hustedt) H. Ko	obayas	si	*	5	2
	234,41	DEN1	-	Denticula sp1							
23	57,36	EORU	ERTT	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Monni	er	*	4,5	2
17	42,39	ND01	-	Navicula(dicta) se	minulum for	me 1					
15	37,41		-	Nupela sp1							
13	32,42		-	Nitzschia inconspi	cua Grunov	V			*	2,8	1
10	24,94	EO06	-	Eolimna sp6							
8	19,95	NINK	-	Navicula incarum	Lange-Berta	alot & Rumrich	1			3,6	1
6	14,96	EO01	-	Eolimna sp1							
6	14,96	AMUS	-	•		Reviers) Mose	r Lange	e-Bertalot & Metzeltir	*	5	1
6	14,96	AD07	-	Achnanthidium sp							
5	12,47	FGOU	-	Fragilaria goulardi			lot		*	4	2
5	12,47	ND02	-	Navicula(dicta) se							
4	9,98	NAMP	-	Nitzschia amphibia		amphibia			*	2	2
4	9,98	NP02	-	Nitzschia palea for							
4	9,98	NIF1	-	Nitzschia frustulun							
4	9,98	NSYM	-	Navicula symmetri					*	3	2
2	4,99	FFON	STAB	Fragilaria fonticola						2	3
2	4,99	TDEB	-	Tryblionella debilis	Arnott ex (D'Meara			*	2	2
2	4,99	NI41	-	Nitzschia sp41							
2	4,99	AD05	-	Achnanthidium sp							
2	4,99	CEUG	-	Cocconeis euglypt	ta Ehrenber	g			*	3,6	1
1	2,49	GE01	-	Geissleria sp1							
1	2,49	EO04	-	Eolimna sp4							
1	2,49	NSLC	-	Navicula salinicola					*	2	2
1	2,49	ND03	-	Navicula(dicta) se	minulum for	me 3					
1	2,49	DI04	-	Diadesmis sp4							
1	2,49	ASTG	-	Amphora subturgio					*	2	2
1	2,49	ARPU	-	Achnanthes rupes	toides Hohr	n var. uniseriat	ta Lang	ge-Bertalot & Monnie	r	3,8	1

RAPPORT FINAL Page 152/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012009100 MARTINIQUE TROU DIABLESSE GRANDE RIVIERE 13/03/2012 08101101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
18,6	15,4	17,4	7,7	9,9	0,0	11,9	13,7	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
56,1	19,6	7,0	10,3	9,6	10,8	11,9	7,5	

NOTES DE QUALITE / 20

	NB d'es E	pèces Effectif	32 412			Divers Equitabil		,30 ,66		Non	nbre de genres	17			
Nomb	re o/oo	Code	ou	Désig	gnation							* : taxo	n IBD	IPS S	IPS V
106	310,68 257,28	ADSH DEN1	-	Denti	cula sp1	subhuds	onis (Hus	stedt) H. Ko	bayas	si			*	5	2
33 24	80,10 58,25	NUP1 NINK	-		la sp1 cula incar	um Lange	-Bertalot	& Rumrich						3,6	1
20 16 13	48,54 38,83 31,55	ND01 EO06 AD05	-	Eolim Achn	na sp6 anthidium			1							
8	19,42	NIF1	-			ulum form		D4-I	1-4				*		2
8 7	19,42 16,99	FGOU CEUG	-			ardıi (Brei İlypta Ehr		ange-Bertal	iot				*	4 3,6	2 1
4	9,71	AMUS	-					iers) Moser	Lange	e-Ber	talot & Metzelt	in	*	5	1
4	9,71	NINC	-			nspicua G	runow						*	2,8	1
4 4 3	9,71 9,71 7,28	NI41 ARPU ND02	-	Achn Navid	ula(dicta)				a Lang	ge-Be	rtalot & Monni	er		3,8	1
3 3 3	7,28 7,28 7,28	EO01 NURU GE01	-	Nupe	nna sp1 la rumricl sleria sp1	norum Lai	nge-Berta	alot					*	5	1
3	7,28	NER2	-			a forme 2	<u>)</u>								
2	4,85 4,85	NP02 PRBU	-			a forme 2 obustius ((Hustedt)	Lange-Ber	talot				*	4,6	1
2	4,85	AD08 TDEB	-		anthidium		# av O'M						*	2	2
2 2 1	4,85 4,85 2,43 2,43	PTS1 AD07 EO04	-	Plate Achn	ionella de ssa sp1 anthidium ina sp4	bilis Arno n sp7	tt ex O IVI	eara					î	2	2
1 1 1 1	2,43 2,43 2,43 2,43 2,43	NQDJ MAPE DCOT EORU	- MPMI - ERTT	Navid Maya Diade	cula quasi maea ato esmis con	mus var. Itenta (Gr	permitis unow ex	ertalot & Ru (Hustedt) La V. Heurck) Bertalot &	ange-E Mann	Bertal	ot		* * *	4 2,3 3,5 4,5	1 1 1 2
1 1	2,43 2,43	PLFR NSYM	-	Pland	thidium f	•	simum(La	ange-Bertal			ertalot		*	3,4	1 2

RAPPORT FINAL Page 153/216

N°PREP
BASSIN
SITE
RIVIERE
DATE
CODE HYDROLOGIQUE
PARTICULARITES E2685

2012009200 MARTINIQUE AEP VIVE CAPOT CAPOT 13/03/2012 08115101

IPS	SLA	DESCY	IDAP	GENRE		SHE	WAT	
17,1	14,3	10,2	5,9	6,6	0,0	11,5	14,3	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
66,8	17,7	4,8	8,1	8,8	15,5	10,5	2,7	

NOTES DE QUALITE / 20

NB d'espèces 37 Effectif 422	Diversité 3,32 Equitabilité 0,64	Nombre de genres 17	

Nomb	re o/oo	Code	ou	Désignation *	: taxon IBD	IPS S	IPS V
165	391,00	ADSH	-	Achnanthidium subhudsonis (Hustedt) H. Kobayasi	*	5	2
90	213,27	DEN1	-	Denticula sp1			
21	49,76	NAMP	_	Nitzschia amphibia Grunow f.amphibia	*	2	2
16	37,91	EO06	-	Eolimna sp6			
14	33,18	NINC	-	Nitzschia inconspicua Grunow	*	2,8	1
11	26,07	AD07	-	Achnanthidium sp7			
10	23,70	EO01	-	Eolimna sp1			
9	21,33	NINK	-	Navicula incarum Lange-Bertalot & Rumrich		3,6	1
8	18,96	GO50	-	Gomphonema sp50			
8	18,96	GBOB	-	Gomphonema bourbonense E. Reichardt et Lange-Bertalot	*	3,8	2
8	18,96	AD06	-	Achnanthidium sp6			
7	16,59	AMUS	-	Adlafia muscora (Kociolek & Reviers) Moser Lange-Bertalot & Metzeltir) *	5	1
6	14,22	NIF1	_	Nitzschia frustulum forme 1			
5	11,85	MAPE	MPMI	Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot	*	2,3	1
5	11,85	AD08	-	Achnanthidium sp8			
4	9,48	GO57	-	Gomphonema sp57			
3	7,11	EORU	ERTT	Eolimna ruttneri (Hustedt) Lange-Bertalot & Monnier	*	4,5	2
3	7,11	NSYM	-	Navicula symmetrica Patrick	*	3	2
3	7,11	NTER	_	Nitzschia terrestris (Petersen) Hustedt	*	3	1
3	7,11	ASTG	-	Amphora subturgida Hustedt	*	2	2
2	4,74	CEUG	-	Cocconeis euglypta Ehrenberg	*	3,6	1
2	4,74	ADEG	_	Achnanthidium exiguum (Grunow) Czarnecki	*	3	2
2	4,74	AD10	_	Achnanthidium sp10			
2	4,74	FTNR	-	Fallacia tenera (Hustedt) Mann in Round	*	3	2
2	4,74	PRBU	-	Planothidium robustius (Hustedt) Lange-Bertalot	*	4,6	1
2	4,74	AD03	-	Achnanthidium sp3			
1	2,37	NNGO	-	Naviculadicta nanogomphonema Lange-Bertalot & Rumrich	*	3,4	1
1	2,37	TDEB	-	Tryblionella debilis Arnott ex O'Meara	*	2	2
1	2,37	FFON	STAB	Fragilaria fonticola Hustedt		2	3
1	2,37	NSLC	-	Navicula salinicola Hustedt	*	2	2
1	2,37	EO04	-	Eolimna sp4			
1	2,37	NI41	_	Nitzschia sp41			
1	2,37	DCOT	-	Diadesmis contenta (Grunow ex V. Heurck) Mann	*	3,5	1
1	2,37	SE02	-	Sellaphora sp2			
1	2,37	ND01	-	Navicula(dicta) seminulum forme 1			
1	2,37	ADCT	-	Achnanthidium catenatum (Bily & Marvan) Lange-Bertalot	*	4,5	2
1	2,37	NCXM	_	Navicula cruxmeridionalis Metzeltin, Lange-Bertalot & Garcia-Rodrigue	7	3	2

RAPPORT FINAL Page 154/216

N°PREP
BASSIN
SITE
RIVIERE
DATE
CODE HYDROLOGIQUE
PARTICULARITES E2685

2012011000 MARTINIQUE PONT DE MONTGERALD MONSIEUR 14/03/2012 08412102

	IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
	11,0	13,4	12,0	6,5	10,1	4,8	10,3	10,6	
	TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
	82,4	12,2	5,3	7,6	8,9	14,9	10,6	3,8	
- 1		I	I	I	I	l	I	I	1

NOTES DE QUALITE / 20

	NB d'es E	pèces Effectif	43 423		versité tabilité	4,41 0,81		Nombre de genres	21		
Nomb	re o/oo	Code	ou	Désignation					* : taxon IBD	IPS S	IPS V
	167,85	NINK	-	Navicula incarum La	ange-Ber	talot & Rumr	ich			3,6	1
	115,84	EO06	-	Eolimna sp6							
40	94,56	NNGO	-	Naviculadicta nanog		ema Lange-l	Bertalot	& Rumrich	*	3,4	1
37	87,47	GO51	-	Gomphonema sp51							
27	63,83	GO57	-	Gomphonema sp57							
23	54,37	GO50	-	Gomphonema sp50						2.0	4
20	47,28	NINC	-	Nitzschia inconspicu		W			*	2,8	1
14	33,10	NP01	-	Nitzschia palea form		famphibia			*	2	2
12 11	28,37 26,00	NAMP NSYM	-	Nitzschia amphibia Navicula symmetrica					*	2	2 2
10		GO68		•					^	3	2
8	23,64 18,91	ADSH	-	Gomphonema sp68 Achnanthidium subh		(Hustodt) H	Kobaya	ci	*	5	2
7	16,55	FFON	STAB	Fragilaria fonticola l		(Husteut) 11.	Nobaya	31		2	3
7	16,55	EO01	- -	Eolimna sp1	lusieui					2	3
6	14,18	ASTG	_	Amphora subturgida	Husted	+			*	2	2
6	14,18	NP02	_	Nitzschia palea form		•				_	_
6	14,18	NCXM	_			etzeltin Land	e-Bertal	ot & Garcia-Rodrigue	27	3	2
5	11,82	SID1	_	Simonsenia sp1	oriano ivi	otzoran, zang	je Berta	or a carda reariga		·	_
5	11,82	CEUG	_	Cocconeis euglypta	Ehrenbe	era			*	3,6	1
4	9,46	NI41	_	Nitzschia sp41		9				-,-	
4	9,46	FSAP	_	Fistulifera saprophil	a (Lange	-Bertalot & B	onik) La	nge-Bertalot	*	2	1
4	9,46	MAPE	MPMI	Mayamaea atomus					*	2,3	1
4	9,46	FTNR	_	Fallacia tenera (Hus			, 3		*	3	2
4	9,46	NSGG	_	Navicula supergrega			Rumrich	1			
4	9,46	PRBU	-	Planothidium robust					*	4,6	1
3	7,09	EO04	-	Eolimna sp4	•						
3	7,09	EORU	ERTT	Eolimna ruttneri (Hu	stedt) La	ange-Bertalot	& Monr	ier	*	4,5	2
3	7,09	NERI	-	Navicula erifuga Lar	nge-Berta	alot			*	2	3
3	7,09	NARV	-	Navicula arvensis H	ustedt				*	3	1
3	7,09	GO69	-	Gomphonema sp69							
3	7,09	DCOT	-	Diadesmis contenta		v ex V. Heuro	k) Manr	1	*	3,5	1
2	4,73	NIGE	-	Nitzschia ingenua H							
2	4,73	NCLA	-	Nitzschia clausii Ha	ntzsch				*	2,8	3
2	4,73	NI64	-	Nitzschia sp64							
2	4,73	SMN1	-	Seminavis sp1							
2	4,73	GTNR	-	Gomphosphenia ter			chardt			3	1
1	2,36	LMUT	-	Luticola mutica (Küt	٠,	iviann . د			*	2	2
1	2,36	NROS	-	Navicula rostellata k		ا المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام	On wheeled		*	3	3
1	2,36	CMLF	-	Craticula molestifor			serraiot		*	2	1
1	2,36	ND03	-	Navicula(dicta) sem					*	2	2
1 1	2,36	TDEB ULAN	-	Tryblionella debilis A Ulnaria lanceolata (I					•	2 3,5	2 2
1	2,36 2,36	FGOU	-	Fragilaria goulardii (rtalot		*	3,5	2
'	2,30	FGUU	-	i ragilaria goulardii (คา ยกเจร(ni) Lange-De	itaiUl			4	2

RAPPORT FINAL Page 155/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012011600 MARTINIQUE SAINT PIERRE (ANCIEN PONT) ROXELANE 14/03/2012 08329101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
10,7	14,0	11,3	5,8	1,8	4,6	11,2	11,6	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
93,8	11,6	5,1	7,9	7,9	18,4	11,3	2,7	

NOTES DE QUALITE / 20

	NB d'es E	pèces ffectif	27 464		Diversité Equitabilité	2,62 0,55	Nombre de genres	16		
Nombi	re o/oo	Code	ou	Désignati	ion		,	taxon IBD	IPS S	IPS V
209	450,43	NINC	-	Nitzschia	inconspicua Gruno	W		*	2,8	1
101	217,67	NAMP	-	Nitzschia	amphibia Grunow f.	amphibia		*	2	2
67	144,40	ADSH	-	Achnanth	idium subhudsonis	(Hustedt) H. Kobaya	asi	*	5	2
14	30,17	NIF1	-	Nitzschia	frustulum forme 1					
11	23,71	NINK	-	Navicula i	incarum Lange-Bert	alot & Rumrich			3,6	1
8	17,24	DEN1	-	Denticula	sp1					
7	15,09	GO50	-		nema sp50					
5	10,78	AD06	-		idium sp6					
5	10,78	MAPE	MPMI	Mayamae	ea atomus var. perm	itis (Hustedt) Lange	-Bertalot	*	2,3	1
5	10,78	AD07	-		idium sp7					
4	8,62	ESBM	-	Eolimna s	subminuscula (Mang	juin) Moser Lange-E	Bertalot & Metzeltin	*	2	1
3	6,47	EORU	ERTT	Eolimna r	ruttneri (Hustedt) La	nge-Bertalot & Monr	nier	*	4,5	2
3	6,47	ND02	-		dicta) seminulum fo					
3	6,47	FSAP	-		a saprophila (Lange-		ange-Bertalot	*	2	1
3	6,47	ASTG	-	•	subturgida Hustedt			*	2	2
2	4,31	DPST	-		la pseudostelligera (ee	*	4	1
2	., .	NTER	-		terrestris (Petersen	•		*	3	1
2	4,31	NNGO	-		dicta nanogomphone	ema Lange-Bertalot	& Rumrich	*	3,4	1
2	4,31	EO01	-	Eolimna s	•					
1	2,16	EO02	-	Eolimna s	· ·					
1	2,16	FFON	STAB		fonticola Hustedt				2	3
1	2,16	DCOT	-		s contenta (Grunow	•	า	*	3,5	1
1	2,16	TDEB	-		lla debilis Arnott ex			*	2	2
1	,	CMLF	-		molestiformis (Hust	edt) Lange-Bertalot		*	2	1
1	2,16	NIGE	-		ingenua Hustedt					
1	2,16	CMEN	-		a meneghiniana Kütz	zing		*	2	1
1	2,16	NSYM	-	Navicula	symmetrica Patrick		*	3	2	

RAPPORT FINAL Page 156/216

N°PREP
BASSIN
SITE
RIVIERE
DATE
CODE HYDROLOGIQUE
PARTICULARITES E2685

2012009300 MARTINIQUE AMONT CONFLUENCE PIROGUE LORRAIN 13/03/2012 08203101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
16,9	14,8	20,0	14,7	11,7	0,0	16,8	11,8	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
81,9	17,8	9,1	14,2	9,5	11,5	17,3	9,3	

NOTES DE QUALITE / 20

	NB d'es	pèces ffectif	36 436			Diversi uitabili			No	ombre de genres	19		
Nomb	re o/oo	Code	ou	Désigi	nation					*	: taxon IBD) IPSS	IPS V
	167,43	PRBU	-		hidium robu	stius (l	Hustedt) l	Lange-Berta	lot		*	4,6	1
59	135,32	DEN1	-		ula sp1								
36	82,57	GO50	-		honema sp5							_	
35	80,28	ADSH	-		nthidium sul	bhudso	onis (Hus	tedt) H. Kob	ayasi		*	5	2
29	66,51	EO06	-	Eolimr									
27	61,93	NINK	-		ıla incarum l	Lange-	Bertalot 8	& Rumrich				3,6	1
27	61,93	NUP1	-	Nupela									
26	59,63	AMUS	-					ers) Moser L	.ange-B	ertalot & Metzeltir		5	1
17	38,99	CEUG	-		neis euglypt		nberg				*	3,6	1
16	36,70	GO54	-		honema sp5	54							
9	20,64	GE01	-		eria sp1								
9	20,64	NNGO	-	Navicu	ıladicta nand	ogomp	honema l	Lange-Berta	lot & Ru	ımrich	*	3,4	1
8	18,35	NI64	-		hia sp64								
7	16,06	DCOT	-	Diades	smis content	ta (Gru	inow ex ∨	[/] . Heurck) M	ann		*	3,5	1
7	16,06	AD07	-	Achna	nthidium sp	7							
6	13,76	ARPU	-	Achna	nthes rupes	toides	Hohn var	. uniseriata	Lange-E	Bertalot & Monnie	r	3,8	1
5	11,47	AD03	-	Achna	nthidium sp:	3							
5	11,47	AD06	-	Achna	nthidium sp	6							
5	11,47	NSYM	-	Navicu	ıla symmetri	ica Pat	rick				*	3	2
4	9,17	GPP1	-	Gomp	hosphenia s	p1							
3	6,88	NTER	-		hia terrestris	(Pete	rsen) Hus	stedt			*	3	1
3	6,88	NI41	-	Nitzsc	hia sp41								
3	6,88	EO01	-	Eolimr	na sp1								
3	6,88	EORU	ERT1	Eolimr	na ruttneri (H	lustedt	t) Lange-l	Bertalot & M	onnier		*	4,5	2
2	4,59	NURU	-	Nupela	a rumrichoru	ım Lan	ge-Bertal	ot			*	5	
2	4,59	ADCT	-	Achna	nthidium cat	tenatur	n (Bily &	Marvan) Lar	nge-Ber	talot	*	4,5	2
1	2,29	NJAC	-	Navicu	ıla jacobii M	anguin	١					3	3
1	2,29	TDEB	-	Tryblic	nella debilis	Arnot	t ex O'Me	ara			*	2	2
1	2,29	NARV	-	Navicu	ıla arvensis	Husted	dt				*	3	1
1	2,29	FGOU	-	Fragila	aria goulardii	i (Bréb	isson) La	nge-Bertalo	t		*	4	2
1	2,29	NNOT	-	Navicu	ıla notha Wa	allace	-				*	4,8	1
1	2,29	EO04	-	Eolimr	na sp4								
1	2,29	LAEQ	-		la aequatoria	alis (He	eiden)Lar	nge-Bertalot	et Ohts	uka		3	2
	0.00	0070		_		` `	,	-					

Navicula cruxmeridionalis Metzeltin, Lange-Bertalot & Garcia-Rodriguez

2,29

2,29

2,29 RH02

1

1

G072

NCXM -

Gomphonema sp72

Rhopalodia sp2

RAPPORT FINAL Page 157/216

3

2

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012009400 MARTINIQUE TRACE DES JESUITES LORRAIN 19/03/2012 08201101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
17,4	14,8	20,0	15,2	12,0	0,0	16,8	12,0	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
88,2	18,6	9,1	14,4	9,5	10,9	17,3	9,3	

NOTES DE QUALITE / 20

88,2	2 18,	6 9	,1	14,4	9,5	10,9	17,3	9,3					
	NB d'es	pèces ffectif	25 402			Divers Equitabil	- ,-		Nor	mbre de genres	17		
Nomb	re o/oo	Code	ou	Désig	gnation					*	: taxon IBD	IPS S	IPS V
160	398,01	PRBU	-	Planc	othidium ı	obustius (Hustedt) L	_ange-Berta	alot		*	4,6	1
44	109,45	EO06	-	Eolim	na sp6								
34	84,58	ADSH	-	Achn	anthidiun	n subhuds	onis (Hust	tedt) H. Kol	oayasi		*	5	2
29	72,14	NUP1	-		la sp1								
26	64,68	GO50	-		ohonema								
24	59,70	CEUG	-			glypta Ehre	_				*	3,6	1
13	32,34	NINK	-			_		& Rumrich				3,6	1
12	29,85	NNGO					phonema l	_ange-Bert	alot & Rur	nrich	*	3,4	1
12	29,85	GE01	-		sleria sp1								
8	19,90	DEN1	-		cula sp1								
8	19,90	NI41	-		chia sp41								
5	12,44	GO68	-		ohonema	sp68							
5	12,44	EO01	-		na sp1								
4	9,95	ARPU	-			•			_	ertalot & Monnie		3,8	1
3	7,46	FGOU	-				oisson) La	nge-Bertalo	ot		*	4	2
2	4,98	GO76	-		ohonema								
2	4,98	GPP1	-		ohospher		4				*	2	_
2	4,98	NSYM	-			netrica Pa	Trick				*	3	2
2	4,98	SURS	-		ella speci		·!> N.4-4	I4' 0 I	- D4-1-4			4	1
2	4,98	ELEP	-					Itin & Lang			*	3,5	1
1	2,49	DCOT	-					. Heurck) N	lann		*	3,5	1
1	2,49	ND02	-) seminulu					*	2	2
1	2,49	TDEB NNOT	-	•		ebilis Arnot a Wallace	it ex O Me	aid			*	2 4,8	2 1
1	2,49 2,49	ND01	-				ım formo	1			•	4,0	ı
- 1	2,49	NDUT	-	INAVIO	uia(uicla) seminulu	iiii ioiiiie	ı					

RAPPORT FINAL Page 158/216

N°PREP
BASSIN
SITE
RIVIERE
DATE
CODE HYDROLOGIQUE
PARTICULARITES E2685

2012009500 MARTINIQUE SEGUINEAU LORRAIN 13/03/2012 08205101

IPS	SLA	DESCY	IDAP	GENRE		SHE	WAT	
15,4	10,6	19,4	6,6	13,0	0,0	13,8	11,5	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
69,2	17,0	10,7	13,0	10,0	13,1	11,8	5,7	

NOTES DE QUALITE / 20

	NB d'es E	pèces ffectif	42 417		Diversité Equitabilité	3,88 0,72	Nombre de genres	21		
Nomb	re o/oo	Code	ou	Désignation			*	: taxon IBD	IPS S	IPS V
	335,73	GO50	-	Gomphonema s	sp50					
	110,31	EO06	-	Eolimna sp6					_	•
34	81,53	ADSH	-			Hustedt) H. Kobaya	SI	*	5	2
24	57,55	PRBU	-			dt) Lange-Bertalot		*	4,6	1
16 15	38,37 35,97	AD05 GO51	-	Achnanthidium : Gomphonema s						
12	28.78	NNGO				ma Langa Portalet	0 Dumrich	*	2.4	1
11	26,78	AMUS	-			ma Lange-Bertalot (a Rumnen ge-Bertalot & Metzeltin		3,4 5	1 1
11	26,38	DEN1	-	Denticula sp1	(NOCIOIER & N	reviers) Moser Lang	je-bertalot & Metzeitin		5	
10	23,98	CEUG	-	Cocconeis eugly	vnta Ehrenher	7		*	3,6	1
10	23,98	ADCT	_			y & Marvan) Lange-	-Rertalot	*	4,5	2
9	21,58	GO57	_	Gomphonema s		y & Marvari) Larige	-Dertaiot		4,5	_
8	19,18	CBAC	_	Caloneis bacillu		leve		*	4	2
7	16,79	FFON	STAB						2	3
6	14,39	NSYM	-	Navicula symme				*	3	2
5	11,99	EO01	_	Eolimna sp1						_
5	11,99	NINK	_	Navicula incaru	m Lange-Berta	lot & Rumrich			3,6	1
4	9,59	FGOU	_) Lange-Bertalot		*	4	2
4	9,59	DI05	_	Diadesmis sp5	•	,				
4	9,59	TAPI	_	Tryblionella apid	culata Gregory			*	2,4	2
4	9,59	GE01	-	Geissleria sp1						
3	7,19	NUP1	-	Nupela sp1						
3	7,19	GO63	-	Gomphonema s	sp63					
2	4,80	NI41	-	Nitzschia sp41						
2	4,80	NI64	-	Nitzschia sp64						
2	4,80	AD08	-	Achnanthidium	sp8					
2	4,80	AD06	-	Achnanthidium	•					
2	4,80	ARPU	-	•		var. uniseriata Lan	ge-Bertalot & Monnier	•	3,8	1
2	4,80	AD07	-	Achnanthidium						
2	4,80	NINC	-	Nitzschia incons		1		*	2,8	1
1	2,40	NSLC	-	Navicula salinio				*	2	2
1	2,40	FTNR	-	Fallacia tenera	(Hustedt) Manı	n in Round		*	3	2
1	2,40	CYM1	-	Cymbella sp.1					4,7	2
1	2,40	NQDJ	-			-Bertalot & Rumricl	n		4	1
1	2,40	GPP1	-	Gomphosphenia		NIB 4				•
1	2,40	TDEB	-	Tryblionella deb		rivieara		*	2	2
1	2,40	NER1	-	Navicula erifuga	a forme 1					
1	2,40	EO04	-	Eolimna sp4	avialia vastis NASA	malifica I agrees Decided	at 0 Cavaia Dadwig	_	•	2
1	2,40	NCXM	-				ot & Garcia-Rodriguez	*	3	2
1	2,40	DCOT	-	Diagesmis conte	enta (Grunow e	ex V. Heurck) Mann	l	*	3,5	1

Luticola aequatorialis (Heiden)Lange-Bertalot et Ohtsuka

1

2,40 LU06

2,40 LAEQ

Luticola sp6

RAPPORT FINAL Page 159/216

3

2

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012009600 MARTINIQUE PONT RD24 SAINTE MARIE BEZAUDIN 13/03/2012 08213101

11,6 14,3 14,7 5,8 5,8 1,0 10,6 11,1 TDI IBD DI-CH EPI-D IDP LOBO SID TID 94,0 11,6 6,2 8,1 8,1 20,0 11,8 4,6	IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
	11,6	14,3	14,7	5,8	5,8	1,0	10,6	11,1	
94,0 11,6 6,2 8,1 8,1 20,0 11,8 4,6	TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
	94,0	11,6	6,2	8,1	8,1	20,0	11,8	4,6	

NOTES DE QUALITE / 20

94,	0 11,	6 6	5,2	8,1	8,1	20,0	11,8	4,6					
	NB d'es	pèces ffectif	19 409			Divers Equitabil	,		N	ombre de genres	10		
Nomb	ore o/oo	Code	ou	Dési	gnation					,	taxon IBD	IPS S	IPS V
187	,	NINC	-			nspicua G	runow				*	2,8	1
105	,	GO50	-		phonema	sp50							
34	,	EO01	-		nna sp1								
27	66,01	ADSH	-				onis (Hus	tedt) H. Kol	oayasi		*	5	2
13	,	GO57	-		phonema								
8	,	NAMP	-			hibia Grur	now f.amp	hibia			*	2	2
5	,	EO04	-		na sp4								
5	,	DEN1	-		cula sp1								
5	, , , , , , , , , , , , , , , , , , , ,	GO51	-		phonema								
4	•	NIF1	-			ulum form	e 1						
3	,	EO06	-		nna sp6				_				
3	,	AMUS	-						Lange-E	Bertalot & Metzelti	n *	5	1
3		NINK	-					Rumrich R				3,6	1
2	4,89	NSYM	-	Navid	cula symn	netrica Pa	trick				*	3	2
1	2,44	NARV	-	Navio	cula arver	nsis Huste	dt				*	3	1
1	2,44	DI05	-	Diade	esmis sp5	5							
1	2,44	FSAP	-	Fistul	lifera sapı	rophila (La	ange-Berta	alot & Bonil	k) Lange	-Bertalot	*	2	1
1	2,44	SE02	-	Sella	phora sp2	2							
1	2,44	AD05	-	Achn	anthidium	ı sp5							

RAPPORT FINAL Page 160/216

N°PREP
BASSIN
SITE
RIVIERE
DATE
CODE HYDROLOGIQUE
PARTICULARITES E2685

2012009700 MARTINIQUE GRAND GALION GALION 13/03/2012 08225101

IPS	SLA	DESCY	IDAP	GENRE		SHE	WAT	
10,7	11,5	13,1	6,0	8,3	0,0	7,6	10,4	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
78,4	10,4	5,3	6,5	8,1	10,3	8,7	3,2	

NOTES DE QUALITE / 20

78,4	4 10,	,4 5	,3	6,5	8,1	10,3	8,7	3,2					
	NB d'es	spèces Effectif	30 402			Divers Equitabil		76 77	No	ombre de genres	12		
Nomb	re o/oo	Code	ou	Dési	gnation					,	* : taxon IBD	IPS S	IPS V
	288,56 159,20 69,65	AD08 GO50 EO01	-	Gom	anthidiun ohonema nna sp1								
20	49,75	NP02	-			a forme 2							
19 19	47,26 47,26	NCLA NINC	-			sii Hantzso nspicua G					*	2,8 2,8	3 1
16	39,80	AD10	-		anthidiun		TUTIOW					2,0	'
15	37,31	NINK	_				-Bertalot 8	& Rumrich				3,6	1
12	29,85	NNGO	-					Lange-Berta	alot & Ru	ımrich	*	3,4	1
11	27,36	FSAP	-	Fistul	ifera sap	rophila (La	ange-Berta	alot & Bonik	() Lange	-Bertalot	*	2	1
10	24,88	AD07	-		anthidiun								
10	24,88	AD06	-		anthidiun								
9	22,39	ADCT	-					Marvan) La	nge-Ber	talot	*	4,5	2
8	19,90	ASTG	-			urgida Hu	stedt				*	2	2
6	14,93	AD05	-		anthidiun								
6	14,93	GO57	-		ohonema							•	•
6	14,93	NSYM	-			netrica Pa		4			*	3 5	2
4	9,95	ADSH	-			1 subnuas	onis (Hus	tedt) H. Kol	bayası		*	5	2
4	9,95 9,95	EO06 NAMP	-		na sp6	hibia Grur	now f.amp	hibio			*	2	2
3	7,46	GBOB	-					riibia eichardt et L	ange Re	artalot	*	3,8	2
2	4,98	FFON	STAB			cola Huste		sicilarut et L	ange-be	talot		2	3
2	4,98	PLFR	-					nge-Bertalo	t)I ange	Rertalot	*	3,4	1
2	4,98	NTER					ersen) Hus		t/Lange-	Dertaiot	*	3,4	1
1	2,49	NIF1	_			ulum form		otout					•
1	2,49	PRBU	_					Lange-Berta	alot		*	4.6	1
1	2,49	MAPE	MPMI					Hustedt) La		alot	*	2,3	1
1	2,49	NARV	-			nsis Huste			3- 231		*	3	1
1	2,49	BR01	-	Brack	nysira sp	1							
1	2,49	EORU	ERTT				lt) Lange-l	Bertalot & N	/lonnier		*	4,5	2

RAPPORT FINAL Page 161/216

Suivi DCE 2012 DEAL de la Martinique Année 2012

N°PREP BASSIN SITE **RIVIERE** DATE CODE HYDROLOGIQUE PARTICULARITES E2685

4,89

4,89

4,89

2,44

2,44

2

2

1 1

1

GO78

DEN1

GO81

GO82

DI01

2,44 NURU -

2,44 NCTE

2012009800 MARTINIQUE **GOMMIER GALION** 15/03/2012 08221101

IPS	SLA	DESCY		GENRE		SHE	WAT	
17,0	14,3	?	15,3	13,6	0,0	16,8	0,0	
TDI	IBD		EPI-D	IDP	LOBO	SID	TID	
60,2	19,5	13,2	14,3	0,0	20,0	16,6	9,4	

Denticula sp1

Gomphonema sp78

Gomphonema sp81

Gomphonema sp82

Diadesmis sp1

Nupela rumrichorum Lange-Bertalot

Navicula cryptotenella Lange-Bertalot

NOTES DE QUALITE / 20

4

	NB d'es	spèces Effectif	21 409			Divers Equitabil	-,		No	omb	ore de	genre	es	12			
Nomb	ore o/oo	Code	e ou	ı Dési	gnation								*	: taxo	on IBD	IPS S	IPS V
229	559,90	AD06	_	Achn	anthidium	ı sp6											
73	178,48	GO72	-	Gom	phonema	sp72											
20	48,90	AD05	-	Achn	anthidium	r sp5											
13	31,78	GO54	_	Gom	phonema	sp54											
12	29,34	GBPA	-	Gom	phonema	brasiliens	se ssp.pac	ificum Mos	er Lange	e-Be	ertalot	& Me	etzel	ltin		4	1
11	26,89	PRBU	l -	Pland	thidium r	obustius ((Hustedt) I	_ange-Bert	alot						*	4,6	1
11	26,89	ADCT		Achn	anthidium	n catenatu	im (Bily &	Marvan) La	ange-Ber	talo	t				*	4,5	2
8	19,56	BR01	-	Brack	nysira sp1	l	, ,										
5	12,22	AD07	-	Achn	anthidium	n sp7											
5	12,22	EU21	-	Euno	tia sp21												
4	9,78	NUP1	-	Nupe	la sp1												
4	9,78	EO06	-	Eolim	na sp6												
2	4,89	FGOL	J -	Fragi	laria goul	ardii (Bréł	oisson) La	nge-Bertalo	ot						*	4	2
2	4,89	CO01	-	Cocc	oneis sp1		-										
					-												

RAPPORT FINAL Page 162/216

N°PREP
BASSIN
SITE
RIVIERE
DATE
CODE HYDROLOGIQUE
PARTICULARITES E2685

2012009900 MARTINIQUE PONT SERAPHIN DEUX COURANTS 13/03/2012 08616101

IPS	SLA	DESCY		GENRE		SHE	WAT	
9,4	14,0	15,9	6,7	5,1	6,9	10,0	10,4	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
86,3	9,5	6,9	7,1	6,6	7,6	11,2	5,1	

NOTES DE QUALITE / 20

	NB d'es E	pèces Effectif	46 407		Divers Equitabil		08 74	1	Nombre de genres	24		
Nomb	re o/oo	Code	ou	Désigna	tion				*	: taxon IBD	IPS S	IPS V
	218,67	NI64	-	Nitzschia			-10) 1				0.0	•
	140,05	GOAH FTN1	-		sphenia oahuer tenera forme 1	isis (Hust	edt) Lange-E	sertaic	I		3,2	2
35	100,74 86,00	ASTG	-			stadt				*	2	2
27	66,34	NINC	-		a subturgida Hu a inconspicua G					*	2,8	1
19	46,68	SMN1	-	Semina		Turiow				••	2,0	
16	39,31	NI45	-	Nitzschia								
14	34,40	TAS1	-		osira sp1							
13	31,94	TAS2	_		osira sp2							
13	31,94	SIDE	_		enia delognei La	*	3	2				
12	29,48	NI41	_	Nitzschia				_				
8	19,66	NCXM	_		cruxmeridional	Z	3	2				
5	12,29	NP05	_		a palea forme 5		,g			_		_
5	12,29	NFAS	_		a fasciculata (Gi	นnow)Gru	ınow in V.He	urck		*	2,2	2
4	9,83	NCLA	_		a clausii Hantzs					*	2,8	3
4	9,83	EO02	-	Eolimna	sp2						,	
3	7,37	DP01	-	Diplonei	s sp1							
3	7,37	ESBM	-	Eolimna	subminuscula (Manguin)	Moser Lange	e-Bert	talot & Metzeltin	*	2	1
2	4,91	NROS	-	Navicula	rostellata Kützi	ng				*	3	3
2	4,91	FFON	STAB	Fragilari	a fonticola Hust	edt					2	3
2	4,91	NNGO	-	Navicula	idicta nanogom	honema	Lange-Berta	lot & F	Rumrich	*	3,4	1
2	4,91	NP02	-	Nitzschia	a palea forme 2							
2	4,91	80MA	-	Amphora								
2	4,91	LMUT	-		mutica (Kützing					*	2	2
2	4,91	NDMA	-		a dissipata(Kütz	•			•			
2	4,91	BPAX	-		a paxillifera(O.F					*	2	3
2	4,91	TCAL	-		ella calida (grun		& Grun.) D.G	i. Man	n	*	2,3	2
2	4,91	GYRE	-		na reimeri Sterr						4	3
2	4,91	FTNR	-		tenera (Hustedt		Round			*	3	2
1	2,46	NIGE	-		a ingenua Huste						4.5	•
1	2,46	NDIS	-		a dissipata(Kütz					*	4,5	3
1	2,46	NHUB	-		humboldtiana l	_ange-Bei	talot & Rumi	ricn				
1	2,46	NP06	-		a palea forme 6							
1	2,46	GO57	-		nema sp57							
1 1	2,46 2,46	SE02 AD07	-	Sellapho	hidium sp7							
1	2,46	EO06	-	Eolimna								
1	2,46	ND01	-		ւ(dicta) seminulւ	ım forme	1					
1		NSYM			ı symmetrica Pa		'			*	3	2
1	2,46	SSTG	-		stalagma Hohn		nan				4	1
1	2,46	CATO	_		la atomus Huste		i sai i			*	2	1
1	2,46	DI05	_	Diadesn							_	
1	2,46	NCTE	_		ı cryptotenella L	ange-Bert	alot			*	4	1
1	2,46	NER1	_		erifuga forme 1						4	
1	2,46	IN01	_	Inconnu	•							
1	2,46	NA49	_	Navicula								
•	_,											

RAPPORT FINAL Page 163/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012010000 MARTINIQUE AMONT BOURG RIVIERE PILOTE GRANDE RIVIERE PILOTE 15/03/2012 08813103

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
8,0	14,7	14,8	5,8	4,0	4,8	9,8	9,5	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
96,9	10,2	5,2	7,4	3,7	7,7	11,0	4,2	

NOTES DE QUALITE / 20

96,9	9 10,	,2 5	,2	7,4	3,7	7,7	11,0	4,2					
	NB d'es	pèces Effectif	26 408			Divers Equitabil	,		No	mbre de genres	14		
Nomb	re o/oo	Code	ou	Dési	gnation					*	: taxon IBD	IPS S	IPS V
198	485,29	NINC	_	Nitzs	chia inco	nspicua G	runow				*	2,8	1
43	105,39	ASTG	-	Ampl	nora subt	urgida Hus	stedt				*	2	2
37	90,69	ESBM	-	Eolim	nna subm	inuscula (l	Manguin)	Moser Lan	ge-Bertalo	ot & Metzeltin	*	2	1
21	51,47	NNGO	-	Navid	culadicta	nanogomp	honema l	_ange-Bert	alot & Rui	mrich	*	3,4	1
18	44,12	FFON	STAB			cola Huste	edt					2	3
14	34,31	NP02	-	Nitzs	chia pale	a forme 2							
11	26,96	GO51	-		Gomphonema sp51								
8	19,61	GO57	-		Gomphonema sp57								
8	19,61	NI64	-		Nitzschia sp64								
7	17,16	NAMP	-			hibia Grun					*	2	2
7	17,16	NSGG	-					talot & Rur					
5	12,25	NCXM	-				s Metzelti	n, Lange-B	ertalot &	Garcia-Rodrigue	Z	3	2
5	12,25	GO58	-		phonema	•							
4	9,80	MAPE	MPMI				permitis (l	Hustedt) La	inge-Berta	alot	*	2,3	1
3	7,35	AD07	-		anthidiun								
3	7,35	DI05	-		esmis sp								
2	4,90	EO04	-		nna sp4								
2	4,90	EO02	-		nna sp2								
2	4,90	NI41	-		chia sp41		/	-IAN Databas				2	4
2	4,90	GTNR	-					dt) Reichar		4	*	3	1
2	4,90	NFIC	-				onterta (R	chter) Lanç	ge-Bertaic	Œ	*	3,2	2
	4,90	SMN1	-		navis sp1		(C====================================	O-ava a aki			*	2	2
1	2,45	ADEG	-					Czarnecki			*	3 2	2 2
1 1	2,45	TDEB CMEN	-	-		bilis Arnot		ald			*	2	1
1	2,45 2,45	NOBT	-			neghiniana sa W.M.Si		htuca			•	2	3
	2,45	NODI	-	MILZS	cilia oblu	sa VV.IVI.SI	mun van. C	มมเนรส				2	3

RAPPORT FINAL Page 164/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012010100 MARTINIQUE BEAUREGARD GRANDE RIVIERE PILOTE 15/03/2012 08811101

IPS	SLA	DESCY	IDAP	GENRE		SHE	WAT	
10,5	14,3	15,0	5,8	9,5	14,3	10,6	10,9	
TDI	IBD			IDP	LOBO	SID	TID	
92,6	10,9	6,4	8,2	8,7	13,1	11,9	5,1	

NOTES DE QUALITE / 20

NB d'	espèces Effectif	18 429	Diversité Equitabilité	2,15 0,52	Nombre de genres	8		
Nombre o/o	o Code	ou	Désignation		*	: taxon IBD	IPS S	IPS V
200 466,20		-	Gomphonema sp51					

Nomb	re o/oo	Code	ou	Designation	î : taxon IBD	IPS S	IPS V
200	466,20	GO51	_	Gomphonema sp51			
122	284,38	NINC	-	Nitzschia inconspicua Grunow	*	2,8	1
58	135,20	GO50	-	Gomphonema sp50			
17	39,63	GBOB	-	Gomphonema bourbonense E. Reichardt et Lange-Bertalot	*	3,8	2
4	9,32	NIF1	-	Nitzschia frustulum forme 1			
4	9,32	DEN1	-	Denticula sp1			
4	9,32	DP01	-	Diploneis sp1			
4	9,32	NER3	-	Navicula erifuga forme 3			
2	4,66	CEUG	-	Cocconeis euglypta Ehrenberg	*	3,6	1
2	4,66	NI41	-	Nitzschia sp41			
2	4,66	FTNR	-	Fallacia tenera (Hustedt) Mann in Round	*	3	2
2	4,66	EO04	-	Eolimna sp4			
2	4,66	NI47	-	Nitzschia sp47			
2	4,66	NAMP	-	Nitzschia amphibia Grunow f.amphibia	*	2	2
1	2,33	NER2	-	Navicula erifuga forme 2			
1	2,33	NJAC	-	Navicula jacobii Manguin		3	3
1	2,33	CO02	-	Cocconeis sp2			
1	2,33	EO02	-	Eolimna sp2			

RAPPORT FINAL Page 165/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685

2,33 AMMO -

2,33 NSYM -

SIDE

NCXM

SE02

NNGO -

2,33 NP02

2,33 NINK

2,33

2,33

2,33

2,33

1

1

1

1

1

1

1

2012010200 MARTINIQUE PONT MADELEINE PETITE RIVIERE PILOTE 15/03/2012 08812101

IPS	SLA	DESCY		GENRE		SHE	WAT	
8,2	13,3	15,1	5,7	4,0	5,4	11,1	10,5	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
99,1	10,5	6,3	8,1	7,9	14,5	11,8	5,0	

Amphora montana Krasske

Nitzschia palea forme 2

Sellaphora sp2

Navicula symmetrica Patrick

Navicula incarum Lange-Bertalot & Rumrich

Naviculadicta nanogomphonema Lange-Bertalot & Rumrich

Navicula cruxmeridionalis Metzeltin, Lange-Bertalot & Garcia-Rodriguez

Simonsenia delognei Lange-Bertalot

NOTES DE QUALITE / 20

2,8

3,6

3,4

3

3

2

1

2

1

99,1	I 10,	5 6	,3	8,1	7,9	14,5	11,8	5,0						
	NB d'es	pèces ffectif	23 429			Divers Equitabil				Nom	nbre de genre	s 11		
Nombi	re o/oo	Code	ou	Dési	gnation							* : taxon IBD	IPS S	IPS V
295	687,65	NINC	_	Nitzs	chia inco	nspicua G	runow					*	2,8	1
66	153,85	FFON	STAB	Fragi	laria fonti	cola Huste	edt						2	3
13	30,30	SMN1	-	Semi	navis sp1									
10	23,31	GO57	-	Gom	phonema	sp57								
7	16,32	GO58	-	Gom	phonema	sp58								
5	11,66	EORU	ERTT	Eolin	na ruttne	eri (Husted	lt) Lange-l	Bertalot & N	√lonni	ier		*	4,5	2
5	11,66	GO51	-	Gom	phonema	sp51								
4	9,32	NI45	-	Nitzs	chia sp45	5								
4	9,32	NAMP	-			hibia Grur						*	2	2
2	4,66	ESBM	-	Eolin	na subm	inuscula (Manguin)	Moser Lan	ge-Be	ertalot	t & Metzeltin	*	2	1
2	4,66	NP01	-			a forme 1								
2	4,66	NI64	-	Nitzs	chia sp64	ļ								
2	4,66	NSGG	-			-	_	talot & Rur	mrich					
2	4,66	CEUG	-	Cocc	oneis eu	glypta Ehr	enberg					*	3,6	1
2	4,66	NERI	-	Navid	cula erifuç	ga Lange-l	Bertalot					*	2	3

RAPPORT FINAL Page 166/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012010300 MARTINIQUE DORMANTE OMAN 15/03/2012 08824101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
10,0	14,3	15,4	5,7	4,4	4,8	10,4	10,6	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
90,5	11,5	6,3	8,0	6,9	7,8	11,7	5,1	

NOTES DE QUALITE / 20

	NB d'es E	pèces ffectif	24 403	Diversité 2,65 Nombre de genres Equitabilité 0,58	s 13		
Nombre	0/00	Code	ou	Désignation	* : taxon IBD	IPS S	IPS V
195 4	183,87	NINC	_	Nitzschia inconspicua Grunow	*	2,8	1
76 ′	188,59	NNGO	-	Naviculadicta nanogomphonema Lange-Bertalot & Rumrich	*	3,4	1
28	69,48	FTNR	-	Fallacia tenera (Hustedt) Mann in Round	*	3	2

	. 0,00	0000		200.3.1.4.1011			• .
195	483,87	NINC	_	Nitzschia inconspicua Grunow	*	2,8	1
76	188,59	NNGO	-	Naviculadicta nanogomphonema Lange-Bertalot & Rumrich	*	3,4	1
28	69,48	FTNR	-	Fallacia tenera (Hustedt) Mann in Round	*	3	2
28	69,48	GO50	-	Gomphonema sp50			
18	44,67	ASTG	-	Amphora subturgida Hustedt	*	2	2
9	22,33	SID1	-	Simonsenia sp1			
9	22,33	SMN1	-	Seminavis sp1			
7	17,37	NER2	-	Navicula erifuga forme 2			
5	12,41	GO51	-	Gomphonema sp51			
4	9,93	EO01	-	Eolimna sp1			
3	7,44	CEUG	-	Cocconeis euglypta Ehrenberg	*	3,6	1
3	7,44	ND01	-	Navicula(dicta) seminulum forme 1			
2	4,96	EO02	-	Eolimna sp2			
2	4,96	NSLC	-	Navicula salinicola Hustedt	*	2	2
2	4,96	ADSH	-	Achnanthidium subhudsonis (Hustedt) H. Kobayasi	*	5	2
2	4,96	ESBM	-	Eolimna subminuscula (Manguin) Moser Lange-Bertalot & Metzeltin	*	2	1
2	4,96	TLEV	-	Tryblionella levidensis Wm. Smith	*	2	2
2	4,96	NCLA	-	Nitzschia clausii Hantzsch	*	2,8	3
1	2,48	NSYM	-	Navicula symmetrica Patrick	*	3	2
1	2,48	NP02	-	Nitzschia palea forme 2			
1	2,48	GYRE	-	Gyrosigma reimeri Sterrenburg		4	3
1	2,48	EO04	-	Eolimna sp4			
1	2,48	NINK	-	Navicula incarum Lange-Bertalot & Rumrich		3,6	1
1	2,48	NJAC	-	Navicula jacobii Manguin		3	3

RAPPORT FINAL Page 167/216

Suivi DCE 2012 Année 2012

DEAL de la Martinique (972)

> **N°PREP BASSIN** SITE **RIVIERE** DATE CODE HYDROLOGIQUE PARTICULARITES E2685

2012010400 **MARTINIQUE** PETIT BOURG RIVIERE DES COULISSES 15/03/2012 08803101

IPS	SLA	DESCY		GENRE	CEE	SHE	WAT	
8,2	17,8	17,8	6,0	7,9	5,8	3,8	8,3	
TDI	IBD	DI-CH		IDP	LOBO	SID	TID	
87,4	8,0	4,4	5,1	5,2	7,4	7,2	5,3	

NOTES DE QUALITE / 20

87,4	8,	0 4	,4	5,1	5,2	7,4	1,2	5,3					
	NB d'es	pèces Effectif	44 407			Divers Equitabil		53 83	Nor	mbre de genres	23		
Vomb	re o/oo	Code	ou	Dési	gnation					*	: taxon IBD	IPS S	IPS
55	135,14	ESBM	_	Eolin	na subm	inuscula (Manguin)	Moser Lan	ge-Bertalo	ot & Metzeltin	*	2	1
49	120,39	NP02	-		chia pale								
38	93,37	NSGG	-					ertalot & Rui	nrich				
31	76,17	ASTG	-			urgida Hu					*	2	2
27	66,34	FSAP	-					alot & Bonil	<) Lange-E	Bertalot	*	2	1
26	63,88	NINK	-				-Bertalot	& Rumrich				3,6	1
21	51,60	NP01	-		chia pale							0.4	
17	41,77	NNGO	-				ohonema	Lange-Bert	alot & Rur	nrich	*	3,4	1
10	24,57	GO50	-		phonema	sp50							
9	22,11	EO02	-		nna sp2		:4:- /	T 1 4 14\ 1	D	1-4	*	0.0	4
9	22,11	MAPE	MPN					Hustedt) La	inge-Beπa	TOI	*	2,3	1
8	19,66	CMEN	-			eghiniana		mpere f.lae\	io Ebrank	ora	*	2	1
7 7	17,20 17,20	PLEV TDEB	-					•	is Enrend	erg	*	2	3
7	17,20	GO57	-		phonema	bilis Arno	ii ex O ivie	did			•		
6	14,74	SMN1	-		inavis sp1								
5	12,29	ULAN	_			lata (Kütz) Compà	rο				3,5	2
5	12,29	NSYM	-			netrica Pa		16			*	3,3	2
5	12,29	NINC	_			nspicua G					*	2,8	1
5	12,29	TR05	_		ionella sp		Turiow.					2,0	
5	12,29	CEUG	_			glypta Ehr	enhera				*	3,6	1
5	12,29	NERI	_			ja Lange-l					*	2	3
4	9,83	EORU	ERT					Bertalot & N	/lonnier		*	4,5	2
4	9,83	NI64			chia sp64		,9					.,.	
4	9,83	EO04	_		nna sp4								
3	7,37	FFON	STA			cola Huste	edt					2	3
3	7,37	GYRE	_	_		meri Sterr						4	3
3	7,37	ND01	-		_) seminulu	_	1					
3	7,37	TLEV	-			, idensis V					*	2	2
3	7,37	EO03	-		nna sp3								
3	7,37	NIGE	-	Nitzs	chia inge	nua Huste	edt						
2	4,91	NP03	-	Nitzs	chia pale	a forme 3							
2	4,91	PLFR	-					nge-Bertalo			*	3,4	1
2	4,91	NDMA	-	Nitzs	chia dissi	pata(Kütz	ing)Grund	ow fo.maew	ensis Fog	ed			
2	4,91	TCAL	-					& Grun.) D.	G. Mann		*	2,3	2
2	4,91	GAFF	-			affine Küt					*	4	3
2	4,91	FGOU	-				oisson) La	ange-Bertal	ot		*	4	2
2	4,91	SE02	-		phora sp2								
1	2,46	TAS3	-		assiosira	sp3							
1	2,46	EU24	-		tia sp24								
1	2,46	SIDE	-			elognei La					*	3	2
1	2,46	DCOT	-					/. Heurck) N	/lann		*	3,5	1
1	2,46	NARV	-			sis Huste		144	N.		*	3	1
1	2,46	GSCI	-	Gyro	sigma sci		ullivan et	Wormley) (leve		* Page 168	4	_ 3

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012010500 MARTINIQUE PONT RN1 LEZARDE 15/03/2012 08521102

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
8,8	9,6	16,5	6,0	8,9	0,0	12,2	10,3	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
85,6	11,3	5,6	6,2	8,9	18,5	9,1	4,4	

NOTES DE QUALITE / 20

	NB d'es _l E	pèces ffectif	33 419	Diversité 4,01 Nombre de genres Equitabilité 0,79	s 12		
Nomb	re o/oo	Code	ou	Désignation	* : taxon IBD	IPS S	IPS V
80	190,93	FFON	STAB	Fragilaria fonticola Hustedt		2	3
57	136,04	NINK	-	Navicula incarum Lange-Bertalot & Rumrich		3,6	1
53	126,49	NI41	-	Nitzschia sp41			
32	76,37	AD07	-	Achnanthidium sp7			
26	62,05	AD08	-	Achnanthidium sp8			
22	52,51		-	Navicula symmetrica Patrick	*	3	2
16	38,19	AD05	-	Achnanthidium sp5			
16	38,19	NI64	-	Nitzschia sp64			
14	33,41	ADCT	-	Achnanthidium catenatum (Bily & Marvan) Lange-Bertalot	*	4,5	2
13	31,03	EO01	-	Eolimna sp1			
12	28,64	EO06	-	Eolimna sp6			
10	23,87	NP02	-	Nitzschia palea forme 2			
10	23,87	GO57	-	Gomphonema sp57			
8	19,09	FSAP	-	Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot	*	2	1
7	16,71	AD06	-	Achnanthidium sp6			
7	16,71	NINC	-	Nitzschia inconspicua Grunow	*	2,8	1
4	9,55	GYRE	_	Gyrosigma reimeri Sterrenburg		4	3
4	9,55	NCLA	-	Nitzschia clausii Hantzsch	*	2,8	3
3	7,16	GSCI	-	Gyrosigma sciotense (Sullivan et Wormley) Cleve	*	4	3
3	7,16	NQDJ	-	Navicula quasidisjuncta Lange-Bertalot & Rumrich		4	1
3	7,16	AD09	-	Achnanthidium sp9			
2	4,77	GO63	-	Gomphonema sp63			
2	4,77	GO67	-	Gomphonema sp67			
2	4,77	NI45	-	Nitzschia sp45			
2	4,77	NAMP	-	Nitzschia amphibia Grunow f.amphibia	*	2	2
2	4,77	NIF1	-	Nitzschia frustulum forme 1			
2	4,77	NP01	-	Nitzschia palea forme 1			
2	4,77	GTNR	-	Gomphosphenia tenerrima (Hustedt) Reichardt		3	1
1	2,39	NARV	-	Navicula arvensis Hustedt	*	3	1
1		FGOU	-	Fragilaria goulardii (Brébisson) Lange-Bertalot	*	4	2
1	2,39	ESUM	-	Encyonopsis subminuta Krammer & Reichardt	*	5	1
1	2,39	SE01	-	Sellaphora sp1			
1	2,39	TDEB	_	Tryblionella debilis Arnott ex O'Meara	*	2	2

RAPPORT FINAL Page 169/216

N°PREP
BASSIN
SITE
RIVIERE
DATE
CODE HYDROLOGIQUE
PARTICULARITES E2685

2012010600 MARTINIQUE GUE DE LA DESIRADE LEZARDE 15/03/2012 08521101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
13,9	9,9	15,5	5,8	12,4	16,2	9,7	13,0	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
63,4	15,5	8,4	12,2	8,5	10,8	8,7	8,4	

NOTES DE QUALITE / 20

63,4	4 15,	5 8	,4	12,2	8,5	10,8	8,7	8,4					
	NB d'es	pèces ffectif	34 443			Divers Equitabil			No	mbre de genres	13		
Nomb	re o/oo	Code	ou	Dési	gnation					*	: taxon IBD	IPS S	IPS V
	243,79		-		ohonema								
74	167,04	ADSH	-					tedt) H. Kol	oayasi		*	5	2
45	101,58		-			ılypta Ehr					*	3,6	1
23	51,92		-					ar. conferva			*	1	3
22	49,66		-					eichardt et L		rtalot	*	3,8	2
20		PRBU	-					Lange-Berta	alot		*	4,6	1
19	42,89		-				-Bertalot	& Rumrich				3,6	1
18	40,63		-		anthidium								
15		FGOU	-					nge-Bertalo			*	4	2
13	29,35		-				Lange-Be	ertalot & Rui	mrich			4	1
11	24,83		-		ohonema	sp58							
7	15,80		-		ola sp4								
7		AMUS	-					ers) Moser	Lange-Be	ertalot & Metzeltin	*	5	1
6	13,54		-			a forme 2							
5	11,29		-		anthidium								
5		FFON	STAB			cola Hust	edt					2	3
5	11,29		-		ına sp1								
5	11,29		-		anthidium								
4		GO57	-		ohonema	sp57							
4	9,03		-		ına sp6								
3	6,77	CMLF	-					Lange-Berta			*	2	1
3	6,77		-			ı catenatu	ım (Bily &	Marvan) La	inge-Bert	alot	*	4,5	2
3	6,77		-		na sp4								
2	4,51		-		laria sp2								
2	4,51	NI41	-		chia sp41								
2	4,51		-			ulum form							
2	4,51		-			netrica Pa					*	3	2
2	4,51		-			iculata Gı	regory				*	2,4	2
2	4,51	NP03	-			a forme 3							
2	4,51		-			nspicua G					*	2,8	1
1	2,26	EORU	ERTT				lt) Lange-l	Bertalot & N	/lonnier		*	4,5	2
1	2,26		-		ohonema								
1	2,26	TDEB	-				tt ex O'Me				*	2	2
1	2.26	NCXM	-	Navio	ula cruxn	neridional	is Metzelti	n. Lange-B	ertalot &	Garcia-Rodriquez	Z	3	2

RAPPORT FINAL Page 170/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012010700 MARTINIQUE PONT BELLE ILE LEZARDE 15/03/2012 08504101

IPS	SLA	DESCY	IDAP	GENRE		SHE	WAT	
17,6	14,4	15,4	5,8	7,9	0,0	10,2	14,3	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
64,4	17,6	6,1	7,8	2,2	10,5	11,7	5,0	

NOTES DE QUALITE / 20

04,	+ 17,	,0 0,	, 1	7,0	2,2	10,5	11,7	5,0					
	NB d'es	pèces ffectif	26 424			Divers Equitabil	- ,-		N	ombre de genres	13		
Nomb	re o/oo	Code	ou	Dési	gnation						* : taxon IBD	IPS S	IPS V
166	391,51	ADSH	-	Achn	anthidium	subhuds	onis (Hust	edt) H. Kol	payasi		*	5	2
49	115,57	GO50	-		phonema								
44	103,77	NINC	-	Nitzs	chia incor	nspicua G	runow				*	2,8	1
23	54,25	EO01	-	Eolim	nna sp1								
21	49,53	AD07	-	Achn	anthidium	sp7							
16	37,74	NP02	-	Nitzs	chia palea	a forme 2							
16	37,74	AD08	-		anthidium	sp8							
15	35,38	EO04	-	Eolin	na sp4								
12	28,30	NINK	-	Navio	cula incar	um Lange	-Bertalot 8	Rumrich				3,6	1
11	25,94	NNGO	-	Navio	culadicta i	nanogom	ohonema l	ange-Berta	alot & Ri	umrich	*	3,4	1
11	25,94	GO57	-	Gom	phonema	sp57							
8	18,87	GBOB	-	Gom	phonema	bourbone	ense E. Re	ichardt et L	ange-B	ertalot	*	3,8	2
6	14,15	ASTG	-	Ampl	nora subti	urgida Hu	stedt				*	2	2
5	11,79	EO02	-	Eolim	nna sp2								
4	9,43	NI64	-	Nitzs	chia sp64								
2	4,72	FTNR	-	Falla	cia tenera	(Hustedt) Mann in	Round			*	3	2
2	4,72	FFON	STAB	Fragi	laria fonti	cola Hust	edt					2	3
2	4,72	EO06	-	Eolim	nna sp6								
2	4,72	PRBU	-	Pland	othidium r	obustius (Hustedt) L	.ange-Berta	alot		*	4,6	1
2	4,72	NI41	-	Nitzs	chia sp41								
2	4,72	ESBM	-	Eolim	na subm	inuscula (Manguin)	Moser Lang	ge-Berta	alot & Metzeltin	*	2	1
1	2,36	NSYM	-	Navio	cula symn	netrica Pa	trick				*	3	2
1	2,36	GSCI	-	Gyros	sigma sci	otense (S	ullivan et \	Normley) C	leve		*	4	3
1	2,36	MAPE	MPMI	Maya	ımaea ato	mus var.	permitis (H	Hustedt) La	nge-Ber	talot	*	2,3	1
1	2,36	EORU	ERTT	_				Bertalot & N			*	4,5	2
1	2,36	DEN1	-	Denti	cula sp1								

RAPPORT FINAL Page 171/216

N°PREP
BASSIN
SITE
RIVIERE
DATE
CODE HYDROLOGIQUE
PARTICULARITES E2685

9

9

21,90 DEN1

21,90 NUP1

2012010800 MARTINIQUE PALOURDE LEZARDE LEZARDE 15/03/2012 08501101

IPS	SLA	DESCY				SHE	WAT	
16,7	-25000	20,0	15,3	13,3	0,0	16,8	10,7	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
66,7	18,2	9,1	15,1	9,3	10,5	17,3	9,4	

Denticula sp1

Nupela sp1

NOTES DE QUALITE / 20

	NB d'es E	pèces ffectif	17 411			Divers Equitabil			No	ombre de genr	es	9		
Nomb	ore o/oo	Code	e ou	Désig	gnation				•		*	: taxon IBD	IPS S	IPS V
147	357,66	GO50) -	Gomp	ohonema	sp50								
45	109,49	AD09	-	Achna	anthidium	sp9								
42	102,19	GO72	2 -	Gomp	ohonema	sp72								
35	85,16	AD06) -	Achna	anthidium	sp6								
32	77,86	AD05	· -	Achna	anthidium	ı sp5								
29	70,56	AD07	' -	Achna	anthidium	sp7								
16	38,93	AD03	3 -	Achna	anthidium	sp3								
15	36,50	PRBU	J -	Plano	thidium r	obustius (Hustedt)	Lange-Berta	alot			*	4,6	1

Fragilaria goulardii (Brébisson) Lange-Bertalot 8 19,46 FGOU -2 Achnanthidium catenatum (Bily & Marvan) Lange-Bertalot 2 6 14,60 ADCT 4,5 5 CEUG -Cocconeis euglypta Ehrenberg 12,17 1 3,6 5 12,17 EO06 Eolimna sp6 5 12,17 GO63 Gomphonema sp63 2 Achnanthidium subhudsonis (Hustedt) H. Kobayasi 5 2 4,87 ADSH 2,43 DCOT Diadesmis contenta (Grunow ex V. Heurck) Mann 3,5 1 1

RAPPORT FINAL Page 172/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 **2012010900**MARTINIQUE
PONT DE L'ALMA
BLANCHE
14/03/2012
08511101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
19,3	-25000	10,5	9,5	13,7	0,0	10,5	15,1	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
51,0	20,0	6,4	16,1	9,3	9,2	26,8	8,3	

NOTES DE QUALITE / 20

2

51,0	20,	0 6	0,4	16,1	9,3	9,2	26,8	8,3					
	NB d'es E	pèces Effectif	21 415			Divers Equitabil		64 60	No	ombre de genres	13		
Nomb	re o/oo	Code	ou	Désign	ation					*	: taxon IBD	IPS S	IPS V
191	460,24	ADSH	-	Achnan	ıthidium	subhuds	onis (Hus	tedt) H. Ko	bayasi		*	5	2
84	202,41	DEN1	-	Denticu	ıla sp1								
48	115,66	AD06	-	Achnan									
15	36,14	FGOU	-	Fragilar	ria goula	ardii (Brél	oisson) La	nge-Bertal	ot		*	4	2
15	36,14	AD05	-	Achnan	ıthidium	ı sp5							
9	21,69	GO56	-	Gomph	onema	sp56							
8	19,28	CEUG	-	Coccon	ieis eug	ılypta Ehr	enberg				*	3,6	1
7	16,87	AMUS	-				ek & Revi	ers) Moser	Lange-B	ertalot & Metzeltii	n *	5	1
7	16,87	AD07	-	Achnan		•							
6	14,46	GO51	-	Gomph	onema	sp51							
5	12,05	NUP1	-	Nupela	sp1								
4	9,64	ARPU	-	Achnan	thes ru	pestoides	Hohn vai	. uniseriata	a Lange-l	Bertalot & Monnie	er	3,8	1
4	9,64	PLFR	-	Planoth	iidium fi	requentis	simum(La	nge-Bertalo	ot)Lange	-Bertalot	*	3,4	1
3	7,23	CO02	-	Coccon	ieis sp2								
2	4,82	ULAN	-	Ulnaria	lanceo	lata (Kütz	.) Compèi	e				3,5	2
2	4,82	ND01	-				ım forme						
2	4,82	PRBU	-	Planoth	idium r	obustius ((Hustedt)	_ange-Bert	alot		*	4,6	1
1	2,41	EO06	-	Eolimna	a sp6								
1	2,41	ND02	-	Navicul	a(dicta)	seminulu	um forme	2					

Cymbella tropica Krammer var. tropica Krammer

Cocconeis placentula Ehrenberg var. placentula

1

2,41 CTRO -

CPLA

RAPPORT FINAL Page 173/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012011100 MARTINIQUE PONT DE CHAINES MADAME 14/03/2012 08423101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
9,1	15,9	14,6	5,8	5,1	5,2	7,5	8,6	
TDI	IBD		EPI-D	IDP	LOBO	SID	TID	
92,2	9,0	4,7	6,2	4,1	7,8	9,5	4,2	

NOTES DE QUALITE / 20

	NB d'es E	pèces ffectif	33 428		Diversité Equitabilité	3,54 0,70	Nombre de genres	17		
Nomb	re o/oo	Code	ou	Désignation			*	: taxon IBD	IPS S	IPS V
	343,46		-	Nitzschia incor				*	2,8	1
	196,26		-			uin) Moser Lange-B	Bertalot & Metzeltin	*	2	1
22	51,40		-	Gomphonema						
17	39,72		-	Navicula incaru					3,6	1
16	37,38		-			edt) Lange-Bertalot		*	2	1
15	35,05		-			Bertalot & Bonik) La		*	2	1
12		MAPE	MPMI			itis (Hustedt) Lange	-Bertalot	*	2,3	1
11			-	Cocconeis eug	ılypta Ehrenber	g		*	3,6	1
10		ADSH	-	Achnanthidium	subhudsonis (Hustedt) H. Kobaya	ısi	*	5	2
10	23,36	EO04	-	Eolimna sp4						
10	23,36	NP02	-	Nitzschia palea	a forme 2					
9	21,03	NCXM	-	Navicula cruxn	neridionalis Met	tzeltin, Lange-Bertal	lot & Garcia-Rodrigue:	Z	3	2
8	18,69	NAMP	-	Nitzschia ampl	hibia Grunow f.	amphibia		*	2	2
8	18,69	NERI	-	Navicula erifug	a Lange-Bertal	ot		*	2	3
6	14,02	GBOB	-	Gomphonema	bourbonense E	E. Reichardt et Lang	e-Bertalot	*	3,8	2
6	14,02	DI05	-	Diadesmis sp5	;					
5	11,68	EO06	-	Eolimna sp6						
5	11,68	NSYM	-	Navicula symm	netrica Patrick			*	3	2
4	9,35	DEN1	-	Denticula sp1						
4	9,35	NARV	-	Navicula arven	sis Hustedt			*	3	1
3	7,01	FTNR	-	Fallacia tenera	(Hustedt) Man	n in Round		*	3	2
3	7,01		-	Seminavis sp1	•					
3	7,01	GO51	_	Gomphonema						
1	2,34	NNGO	_			ma Lange-Bertalot	& Rumrich	*	3,4	1
1	2,34	FFON	STAB			•			2	3
1	2,34		_	Eolimna sp1						
1	2,34		_	Nitzschia palea	a forme 1					
1	2,34		_	Nitzschia sp41						
1	2,34		ERTT			nge-Bertalot & Monr	nier	*	4,5	2
1	2,34		-	Sellaphora sp2		5 = ===================================			.,5	_
1		ASTG	_	Amphora subtu				*	2	2
1	2,34		_	Navicula notha				*	4,8	1
1	2,34	EO02	_	Eolimna sp2					.,0	•
				•						

RAPPORT FINAL Page 174/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012011200 MARTINIQUE TUNNEL DIDIER DUCLOS 19/03/2012 08301101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
18,3	14,1	16,0	8,9	11,4	0,0	14,1	14,1	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
59,8	18,6	6,8	11,3	9,2	11,7	13,6	7,2	
								1

NOTES DE QUALITE / 20

	NB d'espè Effe		34 416		Diversité Equitabilité	3,43 0,67	Nombre de genres	18		
Nombre	0/00	Code	OLL	Désignation			*	· taxon IBD	IPS S	IPS \/

lomb	re o/oo	Code	ou	Désignation	* : taxon IBD	IPS S	IPS V
143	343,75	ADSH	-	Achnanthidium subhudsonis (Hustedt) H. Kobayasi	*	5	2
78	187,50	EO06	-	Eolimna sp6			
35	84,13	DEN1	-	Denticula sp1			
30	72,12	NUP1	-	Nupela sp1			
22	52,88	GO50	-	Gomphonema sp50			
13	31,25	NINK	-	Navicula incarum Lange-Bertalot & Rumrich		3,6	1
12	28,85	CEUG	-	Cocconeis euglypta Ehrenberg	*	3,6	1
9	21,63	GO57	-	Gomphonema sp57			
7	16,83	GE01	-	Geissleria sp1			
6	14,42	PRBU	-	Planothidium robustius (Hustedt) Lange-Bertalot	*	4,6	1
6	14,42	NINC	-	Nitzschia inconspicua Grunow	*	2,8	1
5	12,02	GO51	-	Gomphonema sp51			
5	12,02	NNGO	-	Naviculadicta nanogomphonema Lange-Bertalot & Rumrich	*	3,4	1
5	12,02	EORU	ERTT	Eolimna ruttneri (Hustedt) Lange-Bertalot & Monnier	*	4,5	2
5	12,02	DCOT	-	Diadesmis contenta (Grunow ex V. Heurck) Mann	*	3,5	1
3	7,21	ASTG	-	Amphora subturgida Hustedt	*	2	2
3	7,21	AMUS	-	Adlafia muscora (Kociolek & Reviers) Moser Lange-Bertalot & Metzelt	in *	5	1
3	7,21	EO01	-	Eolimna sp1			
3	7,21	ARPU	-	Achnanthes rupestoides Hohn var. uniseriata Lange-Bertalot & Monnie	er	3,8	1
2	4,81	NI41	-	Nitzschia sp41			
2	4,81	NSYM	-	Navicula symmetrica Patrick	*	3	2
2	4,81	NAMP	-	Nitzschia amphibia Grunow f.amphibia	*	2	2
2	4,81	PTS1	-	Platessa sp1			
2	4,81	NFIC	-	Nitzschia filiformis var.conferta (Richter) Lange-Bertalot	*	3,2	2
2	4,81	AD07	-	Achnanthidium sp7			
2	4,81	EO04	-	Eolimna sp4			
2	4,81	ND01	-	Navicula(dicta) seminulum forme 1			
1	2,40	TDEB	-	Tryblionella debilis Arnott ex O'Meara	*	2	2
1	2,40	NER2	-	Navicula erifuga forme 2			
1	2,40	AD06	-	Achnanthidium sp6			
1	2,40	GO81	-	Gomphonema sp81			
1	2,40	GAFF	-	Gomphonema affine Kützing	*	4	3
1	2,40	FTNR	-	Fallacia tenera (Hustedt) Mann in Round	*	3	2
1	2,40	ADS1	-	Adlafia sp1			

RAPPORT FINAL Page 175/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012011300 MARTINIQUE CASE NAVIRE (BOURG SCHOELCHER) CASE NAVIRE 14/03/2012 08302101

IPS	SLA	DESCY	IDAP	GENRE		SHE	WAT	
12,6	13,2	13,8	5,8	10,5	13,0	11,1	11,9	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
77,1	14,0	6,2	8,6	8,8	14,7	11,6	5,3	

NOTES DE QUALITE / 20

	NB d'es E	pèces ffectif	39 457		Divers Equitabil		4,33 0,82		No	mbre de genres	20		
Nomb	re o/oo	Code	ou	Désignation	on					*	: taxon IBD	IPS S	IPS V
	186,00		-	Gomphon									
	102,84		-		dium subhuds			dt) H. Kob	ayasi		*	5	2
45	98,47		-		inconspicua G	runow	/				*	2,8	1
36	78,77		-	Eolimna s									
22	48,14	NINK	-		ncarum Lange	-Berta	alot &	Rumrich				3,6	1
20	43,76	AD08	-	Achnanthi	dium sp8								
17	37,20	AD07	-	Achnanthi	dium sp7								
17	37,20	GO51	-	Gomphon	ema sp51								
16	35,01	GO57	_	Gomphon									
15	32.82	NSYM	-		symmetrica Pa	trick					*	3	2
15		FFON	STAB		fonticola Huste							2	3
15	32,82		-		subturgida Hus						*	2	2
13		CEUG	_		euglypta Ehre		a				*	3,6	1
8		GBOB	_		ema bourbone			hardt et La	ange-Be	rtalot	*	3,8	2
8	17,51		_	Denticula								-,-	
8			_		goulardii (Bréb	isson) Land	e-Bertalot			*	4	2
7	15,32		_	Eolimna s			,	go Dortaio					_
7		NNGO			icta nanogomp	hone	ma La	nge-Berta	lot & Ru	mrich	*	3,4	1
6		EORU	ERTT		uttneri (Husted						*	4,5	2
6	13,13		-		amphibia Grun						*	2	2
5	10,94		_						ange-Re	ertalot & Metzeltin	*	5	1
5	10,94		_	Geissleria	•	JK G I	(CVICI.) WOSCI L	arige-be	rtaiot a Mctzeitii	•		'
4		NCXM				e Met	zeltin	Lange-Re	rtalot &	Garcia-Rodrigue	7	3	2
4		FTNR	-		nera (Hustedt				italot &	Gai cia-i (Gui iguez	*	3	2
3		LU04	-	Luticola s		IVIAII	11 111 13	ound				3	2
3		SMN1	-	Seminavis									
3		LAEQ	-		equatorialis (H	oidon	\Lana	o Portolot	ot Obtou	ıka		3	2
3		AD06	-	Achnanthi		eideri)Lang	e-Dertaiot	et Ontst	ina		3	2
2	4,38		-	Navicula s									
2		MAPE	- MPMI			normi	tio /Uı	intodt) I an	ao Port	alot	*	2.2	4
2					a atomus var.					alot	•	2,3	1 2
	4,38		-		phenia oahuer							3,2	2
1		DCFD	-		confervaceoi						*		_
1		CTRO	-		tropica Kramm				ier			4	2
1		NTER	-		terrestris (Pete						*	3	1
1		PLFR	-		um frequentiss	imum	n(Lang	e-Bertalot)Lange-l	sertalot	*	3,4	1
1		NI41	-	Nitzschia								_	
1	2,19		-				ng f.ro	strata (Kra	sske) M	etzeltin & Lange-	Bert	1	2
1	2,19	NER1	-		erifuga forme 1								
1	2,19	NI64	-	Nitzschia	sp64								

RAPPORT FINAL Page 176/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685

2012011400 MARTINIQUE FOND BAISE CARBET 14/03/2012 08322101

IPS	SLA	DESCY		GENRE		SHE	WAT	
15,7	13,6	16,8	8,5	12,1	13,7	6,8	12,7	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
59,9	15,6	8,6	11,4	9,4	10,9	9,9	8,7	

NOTES DE QUALITE / 20

	NB d'es E	pèces ffectif	37 413		Diversité uitabilité	4,08 0,78	Nombre de genres	18		
Nomb	re o/oo	Code	ou	Désignation			*	: taxon IBD	IPS S	IPS V
72	174,33	GO50	-	Gomphonema sp5	0					
52	125,91	NINK	-	Navicula incarum l					3,6	1
50	121,07	AMUS	-	Adlafia muscora (k	(ociolek &	Reviers) Moser Lan	ge-Bertalot & Metzeltin	*	5	1
49	118,64	CEUG	-	Cocconeis euglypt				*	3,6	1
37	89,59	ADSH	-		ohudsonis	(Hustedt) H. Kobaya	asi	*	5	2
17	41,16	EO01	-	Eolimna sp1						
13	31,48	GBOB	-		rbonense l	E. Reichardt et Lanç	ge-Bertalot	*	3,8	2
12	29,06	EO06	-	Eolimna sp6						
11	26,63	DEN1	-	Denticula sp1						
8	19,37	AD08	-	Achnanthidium sp8						
8	19,37	AD07	-	Achnanthidium sp						
7	16,95	GO51	-	Gomphonema sp5						
7	16,95	NNGO			gomphone	ema Lange-Bertalot	& Rumrich	*	3,4	1
6	14,53	NI47	-	Nitzschia sp47						
6	14,53	EORU	ERTT			nge-Bertalot & Mon	nier	*	4,5	2
6	14,53	NP02	-	Nitzschia palea for						
5	12,11	AD06	-	Achnanthidium spe						
5	12,11	GO56	-	Gomphonema sp5					_	_
4	9,69	NSYM	-	Navicula symmetri				*	3	2
4	9,69	NQDJ	-		uncta Lang	e-Bertalot & Rumrio	ch		4	1
4	9,69	GE01	-	Geissleria sp1		10.1			•	
4	9,69	CMLF	-			edt) Lange-Bertalot		*	2	1
3	7,26	MAPE	MPMI			itis (Hustedt) Lange	e-Bertalot	*	2,3	1
3	7,26	TDEB	-	Tryblionella debilis		O'Meara		*	2	2
3	7,26	ASTG	-	Amphora subturgio		tooliis I aaaaa Daata	let 0 Oeneie De deienee	*	2	2
2	4,84	NCXM	-				llot & Garcia-Rodrigue		3	2
2	4,84	NINC	-	Nitzschia inconspi				*	2,8	1
2	4,84	FGOU	-	Fragilaria goulardii	(Brebissoi	n) Lange-Bertalot		*	4	2
2	4,84	NI41	-	Nitzschia sp41	. (0	ass V. Harmals Man	_	*	2.5	4
	4,84	DCOT	-		a (Grunow	ex V. Heurck) Man	n	*	3,5	1
1 1	2,42	DI05 ND01	-	Diadesmis sp5	minulum fo	rmo 1				
	2,42	NIF1	-	Navicula(dicta) ser		iiie i				
1 1	2,42 2,42	NURU	-	Nitzschia frustulum Nupela rumrichoru		Portalet			_	1
1		FVUL	-					*	5 4	1 3
1	2,42 2,42	EO04	-	Frustulia vulgaris (rriwaites) i	De TOITI		•	4	3
1			-	Eolimna sp4						
- 1	2,42	NUP1	-	Nupela sp1						

RAPPORT FINAL Page 177/216

N°PREP
BASSIN
SITE
RIVIERE
DATE
CODE HYDROLOGIQUE
PARTICULARITES E2685

2012011500 MARTINIQUE SOURCE PIERROT CARBET 14/03/2012 08320101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
17,3	12,9	16,8	10,2	11,5	0,0	12,2	13,4	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
59,0	17,7	9,5	12,6	9,5	13,2	10,9	7,9	

NOTES DE QUALITE / 20

N	B d'espèce Effec	1	Diversi Equitabili	- 1	63 71	Nombre de genres	19

Nombr	e o/oo	Code	ou	Désignation *	: taxon IBD	IPS S	IPS V
105	249,41	ADSH	-	Achnanthidium subhudsonis (Hustedt) H. Kobayasi	*	5	2
80	190,02	AD08	-	Achnanthidium sp8			
45	106,89	NINK	-	Navicula incarum Lange-Bertalot & Rumrich		3,6	1
31	73,63	DEN1	-	Denticula sp1			
25	59,38	AMUS	-	Adlafia muscora (Kociolek & Reviers) Moser Lange-Bertalot & Metzeltin	n *	5	1
22	52,26	CEUG	-	Cocconeis euglypta Ehrenberg	*	3,6	1
19	45,13	EO06	-	Eolimna sp6			
15	35,63	EO01	-	Eolimna sp1			
15	35,63	AD07	-	Achnanthidium sp7			
14	33,25	NSYM	-	Navicula symmetrica Patrick	*	3	2
5	11,88	GO50	-	Gomphonema sp50			
5	11,88	FGOU	-	Fragilaria goulardii (Brébisson) Lange-Bertalot	*	4	2
4	9,50	AD05	-	Achnanthidium sp5			
4	9,50	NI41	-	Nitzschia sp41			
3	7,13	NUP1	-	Nupela sp1			
2	4,75	CBAC	-	Caloneis bacillum (Grunow) Cleve	*	4	2
2	4,75	ARPU	-	Achnanthes rupestoides Hohn var. uniseriata Lange-Bertalot & Monnie	:r	3,8	1
2	4,75	PLFR	-	Planothidium frequentissimum(Lange-Bertalot)Lange-Bertalot	*	3,4	1
2	4,75	ND01	-	Navicula(dicta) seminulum forme 1			
2	4,75	NLIN	-	Nitzschia linearis(Agardh) W.M.Smith var.linearis	*	3	2
2	4,75	NNGO	-	Naviculadicta nanogomphonema Lange-Bertalot & Rumrich	*	3,4	1
2	4,75	NIGE	-	Nitzschia ingenua Hustedt			
2	4,75	NCLA	-	Nitzschia clausii Hantzsch	*	2,8	3
2	4,75	EORU	ERTT	Eolimna ruttneri (Hustedt) Lange-Bertalot & Monnier	*	4,5	2
2	4,75	NI47	-	Nitzschia sp47			
1	2,38	DI05	-	Diadesmis sp5			
1	2,38	ASTG	-	Amphora subturgida Hustedt	*	2	2
1	2,38	PRBU	-	Planothidium robustius (Hustedt) Lange-Bertalot	*	4,6	1
1	2,38	EO04	-	Eolimna sp4			
1	2,38	NSLC	-	Navicula salinicola Hustedt	*	2	2
1	2,38	GE01	-	Geissleria sp1			
1	2,38	NDMA	-	Nitzschia dissipata(Kützing)Grunow fo.maewensis Foged			
1	2,38	GSCA	GYOB	Gyrosigma scalproides (Rabenhorst)Cleve	*	2,8	3
1	2,38	GO57	-	Gomphonema sp57			

RAPPORT FINAL Page 178/216

N°PREP
BASSIN
SITE
RIVIERE
DATE
CODE HYDROLOGIQUE
PARTICULARITES E2685

4,69

4,69

4,69

2,35

2,35

2,35

2,35

2

2

1

1

1

NI41

FSAP

TDEB

ND03

NER2

DI05

NERI

4,69 NP02

2012011700MARTINIQUE
PONTD5-LA BROUE
VAUCLIN
13/03/2012
08703101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
12,0	14,3	15,1	5,8	3,5	13,0	10,5	10,9	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
95,6	11,1	6,2	8,0	7,7	12,7	11,8	5,0	

Nitzschia sp41

Diadesmis sp5

Nitzschia palea forme 2

Navicula erifuga forme 2

Tryblionella debilis Arnott ex O'Meara

Navicula(dicta) seminulum forme 3

Navicula erifuga Lange-Bertalot

NOTES DE QUALITE / 20

2

2

2

2

3

	95,6	5 11,	1	6,2	8,0	7,7	12,7	11,8	5,0					
		NB d'es	pèces ffectif	22 426	8		Divers Equitabil	,		Nor	mbre de genres	11		
1	lomb	re o/oo	Code	OL	ı Dési	gnation					*	: taxon IBD	IPS S	IPS V
	249	584,51	NINC	_	Nitzs	schia incor	nspicua G	runow				*	2,8	1
	55	129,11	EORU	ER.	TT Eolir	nna ruttne	ri (Husted	t) Lange-E	Bertalot & N	/lonnier		*	4,5	2
	39	91,55	GO50	-	Gom	phonema	sp50							
	13	30,52	EO02	-	Eolir	nna sp2								
	13	30,52	GBOE	} -	Gom	phonema	bourbone	nse E. Re	ichardt et L	₋ange-Ber	talot	*	3,8	2
	11	25,82	NIF1	-	Nitzs	schia frust	ulum form	e 1						
	9	21,13	ADSH	-	Achr	nanthidium	n subhuds	onis (Hust	tedt) H. Kol	oayasi		*	5	2
	7	16,43	GO51			iphonema								
	4	9,39	NAMF					now f.ampl	nibia			*	2	2
	3	7,04	FFON		AB Frag	ilaria fonti	cola Hust	edt					2	3
	3	7,04	SMN1			inavis sp1								
	3	7,04	NCXIV						n, Lange-B	ertalot & (Garcia-Rodrigue	Z	3	2
	3	7,04	NJAC			cula jacob	_						3	3
	2	4,69	ESBN	-	Eolir	nna subm	inuscula (Manguin)	Moser Lan	ge-Bertalo	ot & Metzeltin	*	2	1

Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot

RAPPORT FINAL Page 179/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012011800 MARTINIQUE BRASSERIE LORRAINE PETITE RIVIERE 15/03/2020 08533101

IPS	SLA	DESCY	IDAP	GENRE	CEE	SHE	WAT	
9,6	12,2	15,6	8,3	6,2	0,0	9,4	10,7	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
88,7	10,5	6,2	7,0	12,4	10,1	10,1	6,4	

NOTES DE QUALITE / 20

N	B d'espèces Effectif	31 438	Div Equita	ersité abilité	3,63 0,73	Nombre de genres	s 17

Nomb	re o/oo	Code	ou	Désignation	* : taxon IBD	IPS S	IPS V
142	324,20	NI41	-	Nitzschia sp41			
37	84,47	NINC	-	Nitzschia inconspicua Grunow	*	2,8	1
34	77,63	NINK	-	Navicula incarum Lange-Bertalot & Rumrich		3,6	1
29	66,21	FFON	STAB	Fragilaria fonticola Hustedt		2	3
27	61,64	GBOB	-	Gomphonema bourbonense E. Reichardt et Lange-Bertalot	*	3,8	2
27	61,64	GO50	-	Gomphonema sp50			
26	59,36	ASTG	-	Amphora subturgida Hustedt	*	2	2
25	57,08	FSAP	-	Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot	*	2	1
14	31,96	SMN1	-	Seminavis sp1			
13	29,68	AD08	-	Achnanthidium sp8			
12	27,40	GO57	-	Gomphonema sp57			
8	18,26	NDIS	-	Nitzschia dissipata(Kützing)Grunow var.dissipata	*	4,5	3
6	13,70	NI64	-	Nitzschia sp64			
6	13,70	NP02	-	Nitzschia palea forme 2			
4	9,13	FGOU	-	Fragilaria goulardii (Brébisson) Lange-Bertalot	*	4	2
4	9,13	NNGO	-	Naviculadicta nanogomphonema Lange-Bertalot & Rumrich	*	3,4	1
3	6,85	AD10	-	Achnanthidium sp10			
3	6,85	EO02	-	Eolimna sp2			
2	4,57	NFIC	-	Nitzschia filiformis var.conferta (Richter) Lange-Bertalot	*	3,2	2 2
2	4,57	NAMP	-	Nitzschia amphibia Grunow f.amphibia	*	2	
2	4,57	TDEB	-	Tryblionella debilis Arnott ex O'Meara	*	2	2
2	4,57	NSYM	-	Navicula symmetrica Patrick	*	3	2
2	4,57	SID1	-	Simonsenia sp1			
2	4,57	AMMO	-	Amphora montana Krasske	*	2,8	1
1	2,28	IN01	-	Inconnue n°1			
1	2,28	GYRE	-	Gyrosigma reimeri Sterrenburg		4	3
1	2,28	GAFF	-	Gomphonema affine Kützing	*	4	3
1	2,28	NERI	-	Navicula erifuga Lange-Bertalot	*	2	3
1	2,28	MAPE	MPMI	Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot	*	2,3	1
1	2,28	SE02	-	Sellaphora sp2			
0		EO04	-	Eolimna sp4			

RAPPORT FINAL Page 180/216

N°PREP BASSIN SITE RIVIERE DATE CODE HYDROLOGIQUE PARTICULARITES E2685 2012011900 MARTINIQUE AMONT PRISE CANAL HABITATION CERON ANSE CERON 14/03/2012 08014101

IPS	SLA	DESCY		GENRE		SHE	WAT	
16,9	14,8	15,7	6,6	7,7	6,7	10,8	12,6	
TDI	IBD	DI-CH	EPI-D	IDP	LOBO	SID	TID	
63,8	16,1	9,1	9,8	9,5	10,9	12,3	7,3	

NOTES DE QUALITE / 20

	NB d'espèces 37 Effectif 411	Diversité 4,08 Equitabilité 0,78	Nombre de genres 17
--	---------------------------------	-------------------------------------	---------------------

Nomb	re o/oo	Code	ou	Désignation	* : taxon IBD	IPS S	IPS V
72	175,18	ADSH	-	Achnanthidium subhudsonis (Hustedt) H. Kobayasi	*	5	2
72	175,18	EO06	-	Eolimna sp6			
35	85,16	EO01	-	Eolimna sp1			
31	75,43	NINC	-	Nitzschia inconspicua Grunow	*	2,8	1
25	60,83	ND01	-	Navicula(dicta) seminulum forme 1			
23	55,96	CEUG	-	Cocconeis euglypta Ehrenberg	*	3,6	1
21	51,09	DEN1	-	Denticula sp1			
19	46,23	NUP1	-	Nupela sp1			
16	38,93	EORU	ERTT	Eolimna ruttneri (Hustedt) Lange-Bertalot & Monnier	*	4,5	2
12	29,20	GE01	-	Geissleria sp1			
10	24,33	GO83	_	Gomphonema sp83			
8	19,46	NIF1	-	Nitzschia frustulum forme 1			
8	19,46	NINK	_	Navicula incarum Lange-Bertalot & Rumrich		3,6	1
6	14,60	AD05	-	Achnanthidium sp5			
5	12,17	EO04	-	Eolimna sp4			
4	9,73	FGOU	-	Fragilaria goulardii (Brébisson) Lange-Bertalot	*	4	2
4	9,73	NACD	-	Nitzschia acidoclinata Lange-Bertalot	*	5	2
4	9,73	ND02	-	Navicula(dicta) seminulum forme 2			
4	9,73	GO50	-	Gomphonema sp50			
3	7,30	DI05	_	Diadesmis sp5			
3	7,30	MAPE	MPMI	Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot	*	2,3	1
3	7,30	NCXM	-	Navicula cruxmeridionalis Metzeltin, Lange-Bertalot & Garcia-Rodrigue	ez.	3	2
2	4,87	NLIN	-	Nitzschia linearis(Agardh) W.M.Smith var.linearis	*	3	2
2	4,87	NP02	-	Nitzschia palea forme 2			
2	4,87	NURU	-	Nupela rumrichorum Lange-Bertalot	*	5	1
2	4,87	CBAC	-	Caloneis bacillum (Grunow) Cleve	*	4	2
2	4,87	NER2	-	Navicula erifuga forme 2			
2	4,87	PLFR	-	Planothidium frequentissimum(Lange-Bertalot)Lange-Bertalot	*	3,4	1
2	4,87	AD07	_	Achnanthidium sp7			
2	4,87	PRBU	-	Planothidium robustius (Hustedt) Lange-Bertalot	*	4,6	1
1	2,43	NNGO	_	Naviculadicta nanogomphonema Lange-Bertalot & Rumrich	*	3,4	1
1	2,43	NSYM	-	Navicula symmetrica Patrick	*	3	2
1	2,43	DCOT	_	Diadesmis contenta (Grunow ex V. Heurck) Mann	*	3,5	1
1	2,43	IN03	-	Inconnue n ³		-	
1	2,43	ARPU	-	Achnanthes rupestoides Hohn var. uniseriata Lange-Bertalot & Monnie	er	3,8	1
1	2,43	NSLC	-	Navicula salinicola Hustedt	*	2	2
1	2,43	ND03	_	Navicula(dicta) seminulum forme 3			

RAPPORT FINAL Page 181/216

Annexe 4 : Inventaires des macroinvertébrés

RAPPORT FINAL Page 182/216

Case Navire, Tunnel Didier 08301101

	CASE NAVIRE - TUNNE	EL DIDIER - CAN							
	08/03/2012			Echantillon	S		Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
	KONS	Genre ou espèce	SANDRE				N	%	%
	ONGIAIRES		1090	_			0 -1	0.00	0.00
VEF	Cl/ Turbellariés		3326						1.79 0.00
	Cl/ Achètes		907						0.00
	Cl/ Oligochètes		933			5	5	1.79	1.79
МО	LLUSQUES		965	_		J	3	1.79	0.71
WIO	Cl/ Gastéropodes		5123						0.71
	F/ Thiaridae		3123	2			2	0.71	0.71
	Cl/ Bivalves		5125	_				0	0.00
ARI	THROPODES		0120						97.50
	Cl/ Crustacés		859						4.29
	sCl/ Ostracodes			6			6	2.14	2.14
	sCl/ Malacostracés								2.14
	O/ Amphipodes								0.00
	O/ Décapodes								2.14
		Micratya poeyi	20479	2	3	1	6	2.14	
	Cl/ Insectes								93.21
	O/ Trichoptères		181						22.86
	F/ Helicopsychidae	Helicopsyche sp.	336		3		3	1.07	
		Smicridea sp.	20417		3		3	1.07	
		Neotrichia sp.	20422	1	1		2	0.71	
	F/ Polycentropodidae		223		1		1	0.36	
	F/ Polycentropodidae	Cernotina sp.	20427	1	2	3	6	2.14	
		Polyplectropus sp.	20428	1	3		4	1.43	
	F/ Xiphocentronidae	Xiphocentron fuscum	20522	_	42	3	45	16.07	
	O/ Ephéméroptères	5 44	348	_					38.57
	F/ Baetidae	Baetidae sp.	363	8	4	1	13	4.64	
	F/ Baetidae	Americabaetis sp.	20430	5			5	1.79	
	F/Oid	Fallceon ater	20487	1 0	4		5	1.79	
	F/ Caenidae	Caenis sp.	457 20434	6 2	2	1	6 5	2.14 1.79	
	F/ Leptohyphidae F/ Leptohyphidae	Lontohymhoo on	20434	1	1	1	3	1.79	
	r/ Leptonyphidae	Leptohyphes sp. Tricorythodes griseus	20524	28	8	9	45	16.07	
	F/ Leptophlebiidae	Tricorytriodes griseus	20524	8	11	9	19	6.79	
	F/ Leptophlebiidae	Hagenulopsis guadeloupensis	20489	1	3		4	1.43	
	17 Leptophilebilidae	Terpides sp.	20403	3	3		3	1.43	
	O/ Hétéroptères	rerpides sp.	3155				3	1.07	5.00
	F/ Veliidae		743		1		1	0.36	0.00
	F/ Veliidae	Rhagovelia sp.	10254	3	9	1	13	4.64	
	O/ Coléoptères	i inagorona op.	1020.			•			16.07
	F/ Elmidae	Elsianus sp.	20448	23	2	3	28	10.00	
		Neoelmis sp.	20449	2	_	-	2	0.71	
		Hexanchorus sp.	20450	3	4		7	2.50	
	F/ Psephenidae	Psephenops sp.	20452	1	7		8	2.86	
	O/ Diptères		746						10.71
	sF/ Ceratopogoninae		822	1			1	0.36	
	F/ Chironomidae		807			1	1	0.36	
	sF/ Chironominae	Chironomini		5		1	6	2.14	
		Tanytarsini		1	1		2	0.71	
	sF/ Orthocladinae		813	6	2		8	2.86	
	sF/ Tanypodinae		809	8	3		11	3.93	
	F/ Empididae	Hemerodromia sp.	832	1			1	0.36	
	O/ Odonates								0.00
	O/ Lépidoptères	ļ.	849	Ļ					0.00
Non	nbre total d'individus			130	120	30	280		
	nbre de Taxons			27	23	12	34		
	imum			1	1	1		0.00	0.00
	kimum			28	42	9		16.07	97.50
	indice de Shannon						4.28		
	Indice de Simpson						0.08		
	Indice d'Equitabilité						0.84		

RAPPORT FINAL Page 183/216

Suivi DCE 2012 Année 2012

Rivière du Carbet, Source Pierrot 08320101

		SOURCE PIERROT - CAR		Echantillons			Tetal	Fo.4 m	F 0
	13/03/2012				Dhana D	Dhana C	Total	Fréq.	F. Cum.
	(0)10		OANDDE	Phase A	Phase B	Phase C		0/	0/
	CONS DROZOAIRES / CNIDAIRES	Genre ou espèce	SANDRE 3166	1			N - ▼	% *	% ~
	MERTIENS		1052	4			4	0.00	0.00
	DRACARIENS		906	1	11	1	12	0.68	0.68
VEF			300	_				0.00	1.86
	Cl/ Turbellariés		3326			3			0.45
	F/ Dugesiidae		1055		1	7	8	0.45	
	Cl/ Achètes		907						0.00
	Cl/ Oligochètes		933	18	3	4	25	1.41	1.41
МО	LLUSQUES		965						2.48
	Cl/ Gastéropodes		5123						2.48
	F/ Ancylidae		1027	33			33	1.86	
	F/ Thiaridae		E4.0E	10		1	11	0.62	
A D3	Cl/ Bivalves		5125						0.00
AKI	THROPODES Cl/ Crustacés		859						94.70
	sCl/ Ostracodes		639	204			204	11.51	11.51
	sCl/ Malacostracés			204			204	11.51	0.06
	O/ Amphipodes								0.00
	O/ Décapodes								0.06
	F/ Pseudothelphusidae	Guinotia sp.	20483			1	1	0.06	0.00
	Cl/ Insectes		1	1				7.30	83.13
	O/ Trichoptères		181	1					7.73
	F/ Helicopsychidae	Helicopsyche sp.	336	2	3	1	6	0.34	
		Smicridea sp.	20417		39	43	82	4.63	
	F/ Hydroptilidae	Alisorichia sp.	20418		1		1	0.06	
		Neotrichia sp.	20422	3		1	4	0.23	
	F/ Xiphocentronidae	Xiphocentron fuscum	20522		9	35	44	2.48	
	O/ Ephéméroptères		348						33.30
	F/ Baetidae	Americabaetis sp.	20430	4			4	0.23	
		Cloedes caraibensis	20486	1			1	0.06	
	5/0	Fallceon ater	20487		10	7	17	0.96	
	F/ Caenidae	Caenis femina		260			260	14.67	
	F/ Caenidae	Caenis catherinae	20424	8	40	_	8	0.45	
	F/ Leptohyphidae F/ Leptohyphidae	Lantahumhaa an	20434 20488		16 43	7 14	23 57	1.30 3.22	
	r/ Leptonyphidae	Leptohyphes sp. Tricorythodes griseus	20524	180	9	23	212	11.96	
	F/ Leptophlebiidae	Tricorytriodes griseus	20524	160	1	23	1	0.06	
	F/ Leptophlebiidae	Hagenulopsis guadeloupensis	20489			1	1	0.06	
	17 Loptophilobilado	Terpides sp.	20103	6			6	0.34	
	O/ Hétéroptères	r erpraee ep.	3155	<u> </u>				0.0.	0.06
	F/ Veliidae	Rhagovelia sp.	10254		1		1	0.06	
	O/ Coléoptères	,							7.00
	F/ Elmidae	Elsianus sp.	20448	8	17	5	30	1.69	
		Hexanchorus sp.	20450	10	24	48	82	4.63	
	F/ Gyrinidae	Gyretes sp.	10255	2			2	0.11	
	F/ Psephenidae	Psephenops sp.	20452	1	2	7	10	0.56	
	O/ Diptères		746						34.71
	sF/ Ceratopogoninae		822	13	1	5	19	1.07	
	sF/ Chironominae	Chironomini		40	4	1	45	2.54	
		Tanytarsini				1	1	0.06	
	sF/ Orthocladinae		813	196	260	33	489	27.60	
	sF/ Tanypodinae		809	40		2	42	2.37	
	sF/ Harrisius		757	12	4		16	0.90	
	F/ Limoniidae	Chrysopilus sp.	757	_	2	1	2	0.11	
	F/ Rhagionidae O/ Odonates	Chrysophus sp.	842			'	1	0.06	0.34
	F/ Coenagrionidae	ND	658	2			2	0.11	0.34
	F/ Libellulidae	ND	696	2			2	0.11	
	17 Libelialidae	Dythemis sterilis	20493	2			2	0.11	
	O/ Lépidoptères	Dyunemile diamie	849	1 -			_	0.11	0.00
			015						0.00
	nbre total d'individus			1062	461	252	1772		-
	nbre de Taxons			26	21	24	41	0.00	0.00
	mum timum			1 260	1 260	1 48		0.00 27.60	0.00 94.70
ıvidX	arrall!			200	200	40		21.00	34.70
	indice de Shannon						3.61		
	Indice de Simpson						0.13		
	Indice d'Equitabilité						0.67		

RAPPORT FINAL Page 184/216

Rivière de l'Anse Céron, Amont Habitation Céron 08014101

		FPRISE CANAL HABITATION - CEF	₹						
	05/03/2012			Echantillons			Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
	CONS	Genre ou espèce	SANDRE				N-T	%	%
	DRACARIENS		906		1	1	2	0.77	0.77
VER	-								2.30
	Cl/ Turbellariés		3326						0.38
	F/ Dugesiidae		1055	1			1	0.38	
	Cl/ Achètes		907		_		_		0.00
	Cl/ Oligochètes		933	1	3	1	5	1.92	1.92
МО	LLUSQUES		965						2.68
	Cl/ Gastéropodes		5123						2.30
	F/ Ancylidae		1027	4			4	1.53	
	F/ Planorbidae		1009	1			1	0.38	
	F/ Thiaridae			1			1	0.38	
	Cl/ Bivalves		5125						0.38
	F/ Sphaeriidae	Pisidium sp.	1043		1		1	0.38	
ART	THROPODES								94.25
	CI/ Crustacés		859						3.45
	sCl/ Ostracodes			7			7	2.68	2.68
	sCl/ Malacostracés								0.77
	O/ Amphipodes								0.00
	O/ Décapodes					1			0.77
		Micratya poeyi	20479			2	2	0.77	
	CI/ Insectes								90.80
	O/ Trichoptères		181						27.20
		Smicridea sp.	20417		3	45	48	18.39	
		Neotrichia sp.	20422	3	1		4	1.53	
	F/ Philopotamidae	Chimarra sp.	207	2	3	11	16	6.13	
	F/ Xiphocentronidae	Xiphocentron fuscum	20522		1	2	3	1.15	
	O/ Ephéméroptères		348						21.84
		Fallceon ater	20487	1	2	4	7	2.68	
	F/ Leptohyphidae	Leptohyphes sp.	20488			9	9	3.45	
		Tricorythodes griseus	20524	14	14	5	33	12.64	
	F/ Leptophlebiidae	Hagenulopsis guadeloupensis	20489			8	8	3.07	
	O/ Hétéroptères		3155						0.00
	O/ Coléoptères								0.77
		Hexanchorus sp.	20450			2	2	0.77	
	O/ Diptères		746						41.00
	sF/ Ceratopogoninae		822	1		1	2	0.77	
		Tanytarsini		17		4	21	8.05	
	sF/ Orthocladinae		813	15	15	4	34	13.03	
	sF/ Tanypodinae		809	22	3	3	28	10.73	
	sF/ Harrisius			6	1	10	17	6.51	
	F/ Limoniidae		757	3			3	1.15	
		Maruina sp.	20456	1	1		2	0.77	
	O/ Odonates								0.00
	O/ Lépidoptères		849						0.00
NI	bro total diin dividur			400	40	440	201		
	hbre total d'individus			100	49	113	261		
	nbre de Taxons			17	13	17	25	0.00	0.00
	mum			1	1	1		0.00	0.00
Max	imum			22	15	45		18.39	94.25
	indice de Shannon						3.79		
	Indice de Simpson						0.09		
	Indice d'Equitabilité						0.82		

RAPPORT FINAL Page 185/216

Rivière du Galion, Gommier 08221101

_	RIVIERE DU GALION - G	OWWIER - GAL							
	01/03/2012			Echantillons	S		Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
TAX		Genre ou espèce	SANDRE				N-T	%	%
VERS									1.56
(Cl/ Turbellariés		3326		4			0.70	0.78
	F/ Dugesiidae		1055		1		1	0.78	0.00
	CI/ Achètes CI/ Oligochètes		907			1	1	0.78	0.00
	LUSQUES		965			'	'	0.76	18.75
	Cl/ Gastéropodes		5123						10.16
	F/ Ancylidae		1027	2			2	1.56	10110
	F/ Hydrobiidae		973		1		1	0.78	
	F/ Thiaridae			7	3		10	7.81	
(CI/ Bivalves		5125						8.59
	F/ Sphaeriidae	Pisidium sp.	1043	11			11	8.59	
_	HROPODES								79.69
_	Cl/ Crustacés		859						12.50
_	sCl/ Ostracodes			4			4	3.13	3.13
-	sCl/ Malacostracés O/ Amphipodes								9.38
-	O/ Amphipodes O/ Décapodes								9.38
+	o, pecapoues	Micratya poeyi	20479	7	4		11	8.59	3.30
	F/ Pseudothelphusidae	Guinotia sp.	20483	1	-		1	0.78	
(Cl/ Insectes	Camera op:	20100					00	67.19
	O/ Trichoptères		181						8.59
		Smicridea sp.	20417		1		1	0.78	
	F/ Hydroptilidae		193	1			1	0.78	
		Hydroptila sp.	200	3	1		4	3.13	
	F/ Philopotamidae	Chimarra sp.	207		1		1	0.78	
	F/ Xiphocentronidae	Xiphocentron fuscum	20522		4		4	3.13	
	O/ Ephéméroptères		348						17.19
_		Cloedes caraibensis	20486	2	8	1	11	8.59	
-	F/ 0	Fallceon ater	20487	1	1		2	1.56	
-	F/ Caenidae F/ Caenidae	Caenis sp.	457	1			1	0.78 0.78	
-	F/ Leptohyphidae	Caenis femina Leptohyphes sp.	20488	1	1		2	1.56	
	17 Leptortyprilidae	Tricorythodes griseus	20524	2	2		4	3.13	
	F/ Leptophlebiidae	Hagenulopsis guadeloupensis	20489		1		1	0.78	
	O/ Hétéroptères	riagoriaropere guadereaporiere	3155		•		· · ·	0.70	0.00
	O/ Coléoptères		0100						7.81
	F/ Elmidae	Elsianus sp.	20448	2	2		4	3.13	
		Hexanchorus sp.	20450		1		1	0.78	
	F/ Gyrinidae	Gyretes sp.	10255	2			2	1.56	
	F/ Psephenidae	Psephenops sp.	20452		1	2	3	2.34	
	O/ Diptères		746						32.81
	sF/ Ceratopogoninae		822	1		1	2	1.56	
_	sF/ Forcypomyinae	Atrigopogon sp.	20490	1			1	0.78	
_	sF/ Chironominae	Chironomini	012	15			15	11.72	
-	sF/ Orthocladinae		813 809	1 14	2		3	2.34 14.06	
+	sF/ Tanypodinae F/ Empididae	Hemerodromia sp.	832	14	1		18 2	14.06	
-	F/ Limoniidae	Γιστιστουτοιπία δρ.	757	1			1	0.78	
+	O/ Odonates		/ 3 /	<u> </u>				0.70	0.78
+	F/ Libellulidae	ND	696	1	1		1	0.78	3.70
(D/ Lépidoptères		849						0.00
	1					_	465		
	ore total d'individus			82	41	5	128		
Noma Minim	ore de Taxons			23	20	1	33	0.00	0.00
ıvınım Maxir				15	8	2		0.00 14.06	79.69
ı vıcı All	IMIT			13	0			17.00	1 3.03
i	ndice de Shannon						4.32		
h	ndice de Simpson						0.06		
	·								
	ndice d'Equitabilité						0.86		

RAPPORT FINAL Page 186/216

Suivi DCE 2012 Année 2012

Rivière du Lorrain, Trace des Jésuites 08201101

K	JV IERE DU LORRAIN -	TRACE DES JESUITES - LOR							
1:	3/03/2012			Echantillon			Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
TAXONS		Genre ou espèce	SANDRE				N-T	%	%
HYDRACAF			906	4	1	2	7	3.55	3.55
	/ Dugesiidae		1055			3	3	1.52	
	/ Neritidae	Neritina sp.	9825		2	5	7	3.55	
sCl/ Os	stracodes			1	3		4	2.03	2.03
		Smicridea sp.	20417	2	8	50	60	30.46	
F	/ Philopotamidae	Chimarra sp.	207		1	1	2	1.02	
F	/ Baetidae	Baetidae sp.	363	1	1	1	3	1.52	
		Fallceon ater	20487		1	1	2	1.02	
F	/ Leptohyphidae		20434	2	2	8	12	6.09	
F	/ Leptohyphidae	Leptohyphes sp.	20488		4	20	24	12.18	
		Tricorythodes griseus	20524	5	1	1	7	3.55	
F/	/ Leptophlebiidae		20524			1	1	0.51	
F	/ Elmidae	Elsianus sp.	20448	1	1		2	1.02	
		Hexanchorus sp.	20450		3	2	5	2.54	
F/	/ Psephenidae	Psephenops sp.	20452		1	2	3	1.52	
	sF/ Ceratopogoninae		822	1			1	0.51	
F	/ Chironomidae		807	3		2	5	2.54	
	sF/ Chironominae	Chironomini			5		5	2.54	
		Tanytarsini			2	4	6	3.05	
	sF/ Orthocladinae		813	4	17	4	25	12.69	
	sF/ Tanypodinae		809		1		1	0.51	
F/	/ Empididae	Hemerodromia sp.	832			2	2	1.02	
F/	/ Limoniidae		757	3	2	3	8	4.06	
F/	/ Simuliidae		801			1	1	0.51	
F	/ Libellulidae	ND	696	1			1	0.51	
Nombre tota	al d'individus			28	56	114	197		
Nombre de				12	18	20	25		
Minimum	ΙαλΟΙΙΟ			1	10	1	20	0.00	0.00
Maximum				5	17	50		30.46	91.37
Maximum				J J	17	30		30.40	31.01
indice (de Shannon						3.63		
	de Simpson						0.13		
	•								
Indice of	d'Equitabilité						0.50		

RAPPORT FINAL Page 187/216

Suivi DCE 2012 Année 2012

Rivière Lézarde, Palourde 08501101

	LEZARDE - PALOURDE	- PAL							
	08/03/2012			Echantillon	S		Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
TAXO	ONS	Genre ou espèce	SANDRE				N ₊ T	%	%
	RACARIENS		906		1		1	0.23	0.23
VERS									1.64
(Cl/ Turbellariés		3326		2	1			0.23
	F/ Dugesiidae		1055	1			1	0.23	
(Cl/ Achètes		907						0.00
	Cl/ Oligochètes		933	6			6	1.41	1.41
	LUSQUES		965				_		17.80
	Cl/ Gastéropodes		5123	1	2	1			17.80
	F/ Ancylidae		1027	72	1		73	17.10	17.00
	F/ Thiaridae		1027	2		1	3	0.70	
-	Cl/ Bivalves		5125			'		0.70	0.00
	HROPODES		3123						80.33
	Cl/ Crustacés		859						12.41
	sCl/ Ostracodes		033		3		3	0.70	0.70
					3		3	0.70	
	sCl/ Malacostracés								11.71
	O/ Amphipodes								0.00
-	O/ Décapodes			1					11.71
		Micratya poeyi	20479	40	9	1	50	11.71	
	CI/ Insectes								67.92
	O/ Trichoptères		181	1	2	1			13.11
	F/ Calamoceratidae	Phylloicus sp.	20413	2			2	0.47	
		Smicridea sp.	20417		24	6	30	7.03	
		Hydroptila sp.	200		1		1	0.23	
\neg		Neotrichia sp.	20422	7	6		13	3.04	
		Zumatrichia sp.	20424	1			1	0.23	
	F/ Philopotamidae	Chimarra sp.	207			1	1	0.23	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Polyplectropus sp.	20428			2	2	0.47	
	F/ Xiphocentronidae	Xiphocentron fuscum	20522		5	1	6	1.41	
-	O/ Ephéméroptères	Nipriocenti on rascam	348		3	'		1.71	31.85
-	F/ Baetidae	Paatidaa an	363	8	1	2	11	2.58	31.03
-		Baetidae sp.							
-	F/ Baetidae	Americabaetis sp.	20430	50	13	3	66	15.46	
_		Cloedes caraibensis	20486	2	4		6	1.41	
-		Fallceon ater	20487		8	4	12	2.81	
_	F/ Caenidae	Caenis femina		1			1	0.23	
	F/ Caenidae	Caenis catherinae		1			1	0.23	
	F/ Leptohyphidae	Leptohyphes sp.	20488		23	2	25	5.85	
		Tricorythodes griseus	20524	2	6	2	10	2.34	
	F/ Leptophlebiidae	Hagenulopsis guadeloupensis	20489	1		3	4	0.94	
	O/ Hétéroptères		3155						0.23
	F/ Veliidae	Rhagovelia sp.	10254		1		1	0.23	
	O/ Coléoptères	·							7.49
	F/ Elmidae	Elsianus sp.	20448		1	2	3	0.70	
_	., בווווממט	Hexanchorus sp.	20450	1	5	1	7	1.64	
	F/ Gyrinidae	Gyretes sp.	10255	1			1	0.23	
_	F/ Psephenidae	Psephenops sp.	20452	2	5	14	21	4.92	
-	· ·	т зерпенорз зр.			3	14	21	4.32	11.01
-	O/ Diptères		746		_	_		0.04	11.01
-	sF/ Ceratopogoninae		822	.	2	2	4	0.94	-
-	sF/ Forcypomyinae	Atrigopogon sp.	20490	1	_		1	0.23	-
_		Tanytarsini		1	2		2	0.47	
	sF/ Orthocladinae		813	1	17	2	20	4.68	
	sF/ Tanypodinae		809	1	7	2	10	2.34	
	sF/ Harrisius			6	1		7	1.64	
	F/ Empididae	Hemerodromia sp.	832			1	1	0.23	
	F/ Limoniidae		757		1	1	2	0.47	
	O/ Odonates								3.98
	ND			1	1		1	0.23	
	F/ Coenagrionidae	ND	658	12			12	2.81	
	F/ Libellulidae	ND	696	2		2	4	0.94	
C	O/ Lépidoptères		849	1		_	i -		0.23
- 1	F/ Autre		0.5			1	1	0.23	0.20
						'		0.20	
Nomb	ore total d'individus			226	157	59	427		
Nomb	ore de Taxons			27	29	25	41		
Minim	num			1	1	1		0.00	0.00
Maxin				72	24	14		17.10	80.33
							4.18		
i	ndice de Shannon								
	ndice de Shannon								
	ndice de Shannon ndice de Simpson						0.08		

RAPPORT FINAL Page 188/216

DEAL de la Martinique

Suivi DCE 2012

Année 2012

Rivière Pilote, Beauregard 08811101

INVILITE FILOTE - BLA	AUREGARD - PIL							
06/03/2012			Echantillons	3		Total	Fréq.	F. Cum
			Phase A	Phase B	Phase C			
KONS	Genre ou espèce	SANDRE				N-T	%	%
RS								2.27
Cl/ Turbellariés		3326						0.09
F/ Dugesiidae		1055			1	1	0.09	
Cl/ Achètes								0.00
Cl/ Oligochètes			2	13	8	23	2.18	2.18
LLUSQUES		965						86.64
Cl/ Gastéropodes		5123						86.64
F/ Thiaridae			352	276	286	914	86.64	
Cl/ Bivalves		5125						0.00
THROPODES								11.09
Cl/ Crustacés		859						0.38
sCl/ Malacostracés								0.38
O/ Amphipodes								0.00
O/ Décapodes								0.38
	Micratya poeyi	20479			1	1	0.09	
F/ Xiphocaridae	Xiphocaris elongata	20520	1			1	0.09	
	Macrobrachium sp.	3289	1		1	2	0.19	
Cl/ Insectes	·							10.71
O/ Trichoptères		181						0.66
	Neotrichia sp.	20422	3	3	1	7	0.66	
O/ Ephéméroptères	·	348						5.12
i i	Fallceon ater	20487	1	3	3	7	0.66	
F/ Caenidae	Caenis femina		23	6	1	30	2.84	
F/ Leptohyphidae	Leptohyphes sp.	20488		1		1	0.09	
	7,			2	3	5		
	Hagenulopsis guadeloupensis					-		
	garanti garanti ang anata			-	_			0.00
								0.00
		746						1.99
	Chironomini	7.10	2	4		6	0.57	
OT OTH OTHER ADDRESS OF THE ADDRESS				•		-		
sF/ Tanypodinae	ranytaronn	809		9				
						· · ·	1.00	2.94
	ND	658	23		3	26	2 46	
. / Goorlagnonidae			1 -	1				
F/ Libellulidae	-		4					
	2						0.00	0.00
		013						0.00
			418	327	310	1055		
nbre de Taxons			12	11	11	18		
imum			1	1	1		0.00	0.00
kimum			352	276	286		86.64	86.64
indice de Shannon						1 01		
Indice de Simpson						0.75		
Indice d'Equitabilité						0.24		_
	CONS SS C// Turbellariés F/ Dugesiidae C// Achètes C// Oligochètes LLUSQUES C// Gastéropodes F/ Thiaridae C// Bivalves F/HROPODES C// Crustacés SC// Malacostracés O/ Amphipodes O/ Décapodes F/ Xiphocaridae C// Insectes O/ Trichoptères O/ Ephéméroptères F/ Caenidae F/ Leptohyphidae F/ Leptophlebiidae F/ Leptophlebiidae F/ Leptophlebiidae F/ Leptophlebiidae F/ Coléoptères O/ Diptères SF/ Chironominae SF/ Tanypodinae O/ Odonates F/ Coenagrionidae F/ Libellulidae O/ Lépidoptères Dibre total d'individus Dibre de Taxons	CONS CONS CONS CONS CONS CONS CONS CONTribellariés F/ Dugesiidae CON Achètes CON Achètes CON Gastéropodes F/ Thiaridae CON Bivalves CON Amphipodes Con Amphi	CONS Genre ou espèce SANDRE SS	CONS	Phase A Phase B	CONS	CONS Genre ou espèce SANDRE Phase B Phase C N.T	Phase A Phase B Phase C

RAPPORT FINAL Page 189/216

Rivière du Vauclin, La Broue 08703101

	RIVIERE DU VAUCLIN	- LA BROUE - VAU							
	12/03/2012			Echantillon	S		Total	Fréq.	F. Cum.
				Phase A	Phase B	Phase C			
TA	XONS	Genre ou espèce	SANDRE				N-T	%	%
HYI	DROZOAIRES / CNIDAIRES		3166	1			1	0.14	0.14
	YOZOAIRES		1087	3			3	0.43	0.43
۷E									1.01
	Cl/ Turbellariés		3326						0.00
	Cl/ Achètes		907						0.00
	Cl/ Oligochètes		933	3	2	2	7	1.01	1.01
МС	LLUSQUES		965						85.86
	Cl/ Gastéropodes	1	5123						85.86
	F/ Bulinidae	Pleiophysal granulata		9			9	1.30	
	F/ Thiaridae		E40E	208	172	206	586	84.56	0.00
A D:	Cl/ Bivalves		5125						0.00
AK	THROPODES		0.50	1					12.55
	Cl/ Crustacés		859	 				0.70	6.93
	sCl/ Ostracodes sCl/ Malacostracés			5			5	0.72	0.72 6.20
	O/ Amphipodes								0.00
	O/ Amphipodes O/ Décapodes								6.20
	O/ Decapodes	Micratya poeyi	20479		12		12	1.73	0.20
		Jonga serrei	20480	10	12		10	1.73	
		Macrobrachium sp.	3289	19		2	21	3.03	
	Cl/ Insectes	iviaci obraciliani sp.	3203	13				3.03	5.63
	O/ Trichoptères		181						0.87
	F/ Hydroptilidae		193	1			1	0.14	0.07
	17 Tiyaroptillade	Neotrichia sp.	20422	3	1	1	5	0.72	
	O/ Ephéméroptères	rveoureriia sp.	348					0.72	2.45
	F/ Baetidae	Baetidae sp.	363	1			1	0.14	
	F/ Baetidae	Americabaetis sp.	20430	1			1	0.14	
	i / Dasiidas	Fallceon ater	20487			1	1	0.14	
	F/ Caenidae	Caenis femina	20107	5	2	3	10	1.44	
	F/ Leptohyphidae	Leptohyphes sp.	20488	_	_	1	1	0.14	
	.,	Terpides sp.		1	2		3	0.43	
	O/ Hétéroptères	1	3155						0.00
	O/ Coléoptères								0.00
	O/ Diptères		746						2.16
	<u> </u>	Tanytarsini		1			1	0.14	
	sF/ Orthocladinae		813	5	4	3	12	1.73	
	sF/ Tanypodinae		809		1		1	0.14	
	sF/ Harrisius					1	1	0.14	
	O/ Odonates								0.14
	F/ Libellulidae	ND	696	1			1	0.14	
	O/ Lépidoptères		849						0.00
Nor	nbre total d'individus			277	196	220	693		
	mbre de Taxons			17	8	9	22		
	imum			1	1	1		0.00	0.00
	kimum			208	172	206		84.56	85.86
111647				200		200		0 1.00	00.00
	indice de Shannon						1.19		
	Indice de Simpson						0.72		
	Indice d'Equitabilité						0.27		
	maioe a Equitabilite						0.21		

RAPPORT FINAL Page 190/216

Grande Rivière, Trou Diablesse 08101101

	GRANDE RIVIERE -	TROU DIABLESSE - GRD							
	02/03/2012			Echantillon			Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
	KONS	Genre ou espèce	SANDRE				N-T	%	%
	MERTIENS		1052	-		1	1	0.13	0.13
VER	DRACARIENS		906	1	1	2	4	0.52	0.52 2.08
V Er	Cl/ Turbellariés		3326						0.39
	F/ Dugesiidae		1055	1	1	1	3	0.39	0.39
	Cl/ Achètes		907	'	'	ı.	3	0.39	0.00
	Cl/ Oligochètes		933	6	1	6	13	1.69	1.69
ΜO	LLUSQUES		965				10	1.00	0.13
	Cl/ Gastéropodes		5123						0.13
	F/ Thiaridae					1	1	0.13	-
	Cl/ Bivalves		5125						0.00
ART	THROPODES								97.15
	Cl/ Crustacés		859						0.13
	sCl/ Malacostracés								0.13
	O/ Amphipodes								0.00
	O/ Décapodes								0.13
		Micratya poeyi	20479			1	1	0.13	
	Cl/ Insectes								97.02
	O/ Trichoptères		181						11.54
		Smicridea sp.	20417		2	62	64	8.30	
		Neotrichia sp.	20422	1	1		2	0.26	
		Zumatrichia sp.	20424		1	1	2	0.26	
	F/ Philopotamidae	Chimarra sp.	207	2		8	10	1.30	
	F/ Xiphocentronidae	Xiphocentron fuscum	20522	1	9	1	11	1.43	
	O/ Ephéméroptères		348						19.20
	F/ Baetidae	Baetidae sp.	363	1			1	0.13	
	F/ Baetidae	Americabaetis sp.	20430		1	6	7	0.91	
		Cloedes caraibensis	20486	1		2	3	0.39	
		Fallceon ater	20487	_	10	45	55	7.13	
	F/ Leptohyphidae	Leptohyphes sp.	20488		1	31	32	4.15	
	- /1	Tricorythodes griseus	20524	4	13	31	48	6.23	
	F/ Leptophlebiidae	Hagenulopsis guadeloupensis	20489		1	1	2	0.26	
	O/ Hétéroptères		3155						0.00
	O/ Coléoptères	Elejenye en	20449	_	7	40	24	2 11	4.67
	F/ Elmidae	Elsianus sp.	20448	5	7	12 10	24 11	3.11 1.43	
	F/ Psephenidae	Hexanchorus sp. Psephenops sp.	20452		'	10	1	0.13	
	O/ Diptères	гзерпенорз эр.	746				'	0.13	61.22
	Diptère ND		740			1	1	0.13	01.22
	sF/ Chironominae	Chironomini		2		3	5	0.65	
	or, crimonominae	Tanytarsini		1 -		5	5	0.65	
	sF/ Orthocladinae		813	353	37	37	427	55.38	
	sF/ Tanypodinae		809	1	J.,	3	3	0.39	
	sF/ Harrisius					6	6	0.78	
	F/ Empididae	Hemerodromia sp.	832	1	2	3	5	0.65	
	F/ Limoniidae	· ·	757	10	4		14	1.82	
		Maruina sp.	20456			2	2	0.26	
	F/ Simuliidae	·	801			3	3	0.39	
	F/ Syrphidae					1	1	0.13	
	O/ Odonates								0.00
	O/ Lépidoptères		849						0.39
	F/ Autre				1		1	0.13	
	F/ Pyralidae		2947			2	2	0.26	
Nor	nbre total d'individus			388	94	289	771		
	nbre de Taxons			13	18	30	34		
	mum			1	1	1	J-7	0.00	0.00
	kimum			353	37	62		55.38	97.15
· · iuA				000	- 07	02		55.50	57.13
	indice de Shannon						2.73		
	Indice de Simpson						0.33		
	Indice d'Equitabilité						0.54		

RAPPORT FINAL Page 191/216

23/03/2011			Echantillo	ons											Total	Fréq.	F. Cu
			Phase A				Phase B				Phase C	;					
AXONS	Genre ou espèce	SANDRE	1	2	3	4	5	6	7	8	9	10	11	12	N	%	%
PONGIAIRES		1090													0 7	0.00	0.0
F/ Dugesiidae		1055					3	4	2			1		1	11	0.65	
Cl/ Oligochètes		933	23	1	1	1			1			1	1		29	1.71	1.7
F/ Ancylidae		1027		6											6	0.35	
F/ Planorbidae		1009			1										1	0.06	
F/ Thiaridae			11	4	7		1				2		1		26	1.53	
F/ Thiaridae	Melanoides tuberculata	10252	4	2											6	0.35	
F/ Thiaridae	Thiara granifera			2											2	0.12	
sCl/ Ostracodes			51	37											88	5.19	5.1
F/ Helicopsychidae	Helicopsyche sp.	336	2									1	1		4	0.24	
	Smicridea sp.	20417					15	42			2	10		63	132	7.79	
	Neotrichia sp.	20422	3			1									4	0.24	
	Zumatrichia sp.	20424										1			1	0.06	
F/ Xiphocentronidae	Xiphocentron fuscum	20522					10	12			1	7	11	6	47	2.77	
F/ Baetidae	Baetidae sp.	363						2							2	0.12	
F/ Baetidae	Americabaetis sp.	20430									1				1	0.06	
	Cloedes caraibensis	20486	2												2	0.12	
	Fallceon ater	20487	1				10	9						4	24	1.42	
F/ Caenidae	Caenis sp.	457	8	3											11	0.65	
F/ Caenidae	Caenis femina		49	9											58	3.42	
F/ Caenidae	Caenis catherinae		2	3											5	0.29	
F/ Leptohyphidae		20434	8									1	1		10	0.59	
F/ Leptohyphidae	Leptohyphes sp.	20488					7	5		1	12	19		11	55	3.24	
	Tricorythodes griseus	20524	280	4	2		5		2	1	2	1	17		314	18.53	
F/ Leptophlebiidae		20524	1										1		2	0.12	
F/ Leptophlebiidae	Hagenulopsis guadeloupensis	20489						2							2	0.12	
	Terpides sp.		7												7	0.41	
F/ Elmidae	Elsianus sp.	20448	6		8	10	11	1	5				5		46	2.71	
	Neoelmis sp.	20449					1	2						1	4	0.24	
	Hexanchorus sp.	20450	4				9	36	2	1	4	3	2	36	97	5.72	
F/ Gyrinidae	Gyretes sp.	10255	1												1	0.06	
F/ Psephenidae	Psephenops sp.	20452							1		1				2	0.12	
F/ Staphylinidae		20453					1								1	0.06	
F/ Blephariceridae		747					1			2					3	0.18	
F/ Ceratopogonidae		819					1								1	0.06	
sF/ Ceratopogonina		822	10		5	1									16	0.94	
sF/ Chironominae	Chironomini		5	91											96	5.66	
	Tanytarsini	<u> </u>	2	8											10	0.59	
sF/ Orthocladinae		813			360	61	7	2	60		3	1	7	5	506	29.85	
sF/ Tanypodinae		809	14	7									1		22	1.30	
sF/ Harrisius			17			1		1			1		1		21	1.24	
F/ Empididae	Hemerodromia sp.	832	3												3	0.18	
F/ Simuliidae		801												2	2	0.12	
F/ Coenagrionidae	ND	658		8											8	0.47	
	Enallagma coecum	664	2	4											6	0.35	
mbre total d'individus			516	189	384	75	82	118	73	5	29	46	49	129	1695		\vdash
ombre de Taxons			25	15	7	6	14	12	7	4	10	11	12	9	44		
nimum			1	1	1	1	1	1	1	1	1	1	1	1		0.00	0.
aximum			280	91	360	61	15	42	60	2	12	19	17	63		29.85	
						<u>.</u>											
indice de Shannon															3.64		
Indice de Simpson															0.14		
Indice d'Equitabilité															0.50		-

RAPPORT FINAL Page 192/216

Deux courants, Pont Séraphin 08616101

	DEUX COURANTS - PO 12/03/2012	THE SELECTION DOC		Echantillon	9		Total	Fréq.	F. Cum
	12/00/2012			Phase A	Phase B	Phase C	Total	1104.	i . ouii
TAXON	NS	Genre ou espèce	SANDRE			1 11000 0	N-T	%	%
NEM ER	RTIENS		1052		1	2	3	0.05	0.05
NEM AT	THELMINTHES		3111			1	1	0.02	0.02
VERS									1.81
CI/	Turbellariés		3326						0.00
CI/	Achètes		907						0.00
CI/	Oligochètes		933	57	32	23	112	1.81	1.81
MOLL	USQUES		965						0.55
CI/	Gastéropodes		5123						0.55
	F/ Ancylidae		1027	12	8	1	21	0.34	
	F/ Hydrobiidae		973	1		2	3	0.05	
	F/ Thiaridae				9	1	10	0.16	
CI/	Bivalves		5125						0.00
	ROPODES								97.57
	Crustacés		859						0.42
	Cl/ Ostracodes			5		2	7	0.11	0.11
	Cl/ Malacostracés			-		-		- • •	0.31
)/ Amphipodes								0.00
)/ Décapodes								0.31
		Potimirim sp.	20408	1			1	0.02	3.01
	F/ Xiphocaridae	Xiphocaris elongata	20520		1		1	0.02	
	17 Alphodahaac	Macrobrachium sp.	3289	7	6	1	14	0.23	
		M. faustinum	20304	,	2	1	3	0.25	
CI/	Insectes	IVI. Idastiriam	20304				- 3	0.03	97.15
)/ Trichoptères		181						0.18
	// Inchopteres	Neotrichia sp.	20422	3	2	5	10	0.16	0.16
		·	199	3		1	10		
	V Fobémérantèra	Oxyethira sp.				ı	'	0.02	72.53
- 0)/ Ephéméroptères	Danida a an	348					0.00	12.53
	F/ Baetidae	Baetidae sp.	363	44	_	1	1	0.02	
	F/ Baetidae	Americabaetis sp.	20430	11	3		14	0.23	
	F/ Caenidae	Caenis sp.	457	5			5	0.08	
	F/ Caenidae	Caenis femina		2672	912	736	4320	69.94	
	F/ Caenidae	Caenis catherinae		112	16	12	140	2.27	
0)/ Hétéroptères		3155						0.03
	F/ Gerridae		734	1			1	0.02	
	F/ Mesoveliidae	Mesovelia sp.	742	1			1	0.02	
)/ Coléoptères								0.00
0)/ Diptères		746						23.25
	sF/ Ceratopogoninae		822	2	27	12	41	0.66	
	sF/ Dasyheleneidae			1			1	0.02	
	F/ Chironomidae		807	2			2	0.03	
	sF/ Chironominae	Chironomini		224	108	56	388	6.28	
		Tanytarsini		112	304	172	588	9.52	
	sF/ Orthocladinae		813	4	32	204	240	3.89	
	sF/ Tanypodinae		809	56	96	24	176	2.85	
0)/ Odonates								1.17
	Zygoptera ND			42			42	0.68	
		Ischnura ramburii	20458	30			30	0.49	
0/	Lépidoptères		849						0.00
Nombro	e total d'individus			3361	1559	1257	6177		
	e de Taxons			22	16	1257	29		
Minimur				1	1	19	23	0.00	0.00
Maximu				2672	912	736		69.94	97.57
IVICATITIU	4111			2012	312	130		09.34	91.31
ind	lice de Shannon						1.78		
Ind	dice de Simpson						0.51		
									-
	lice d'Equitabilité						0.37		

RAPPORT FINAL Page 193/216

Suivi DCE 2012 Année 2012

Petite Pilote, Pont Madeleine 08812102

	PETITE PILOTE - PONT	MA DELEINE - PPP							
	06/03/2012			Echantillons			Total	Fréq.	F. Cum.
				Phase A	Phase B	Phase C			
TA	XONS	Genre ou espèce	SANDRE				N.√T	%	%
NEN	MERTIENS		1052	1		1	2	0.21	0.21
۷E	RS								1.04
	Cl/ Turbellariés		3326						0.00
	Cl/ Achètes		907						0.00
	Cl/ Oligochètes		933	3	3	4	10	1.04	1.04
MO	LLUSQUES		965						51.82
	Cl/ Gastéropodes		5123		2	4			51.71
	F/ Hydrobiidae		973	2	1		3	0.31	
	F/ Physidae	Physa sp.	997	9	2		11	1.14	
	F/ Thiaridae			364	90	30	484	50.26	
	Cl/ Bivalves		5125						0.10
	F/ Sphaeriidae	Pisidium sp.	1043		1		1	0.10	
AR	THROPODES	·							46.94
	Cl/ Crustacés		859						2.49
	sCl/ Ostracodes			2			2	0.21	0.21
	sCl/ Malacostracés								2.28
	O/ Amphipodes								0.00
	O/ Décapodes								2.28
	·	Micratya poeyi	20479			12	12	1.25	
	F/ Xiphocaridae	Xiphocaris elongata	20520	2			2	0.21	
		Macrobrachium sp.	3289			2	2	0.21	
		M. faustinum	20304	2	3		5	0.52	
		M. crenulatum	20307		1		1	0.10	
	Cl/ Insectes	in or or aratam	20007					00	44.44
	O/ Trichoptères		181						2.39
	C, Trionopiores	Neotrichia sp.	20422	5	8	10	23	2.39	2.00
	O/ Ephéméroptères	теситотна орг	348	<u> </u>		10			23.47
	F/ Baetidae	Baetidae sp.	363	3		13	16	1.66	20.17
	F/ Baetidae	Americabaetis sp.	20430	ľ	4		4	0.42	
	17 Bactidae	Fallceon ater	20487	3	22	14	39	4.05	
	F/ Caenidae	Caenis sp.	457	23	19	7	49	5.09	
	F/ Caenidae	Caenis femina	137	34	38	17	89	9.24	
	F/ Caenidae	Caenis catherinae		1	2		3	0.31	
	F/ Leptohyphidae	Cacino camerinae	20434			3	3	0.31	
	F/ Leptohyphidae	Leptohyphes sp.	20488		3	6	9	0.93	
	F/ Leptonyphidae	Leptonypnes sp.	20524	4	3	1	5	0.52	
	г/ серторпіевііфае	Terpides sp.	20324	3	4	2	9	0.52	
	O/ Hétéroptères	Terprues sp.	3155	3	4		9	0.93	0.00
	O/ Coléoptères		3133						0.00
	O/ Diptères		746						18.59
	sF/ Ceratopogoninae		822	1	1	5	7	0.73	10.59
	F/ Chironomidae		807	8	7	6	21	2.18	
	sF/ Chironomidae	Chironomini	007	23	9	10	42	4.36	
	SF/ Chironominae								
	o E/ Ortho aladina -	Tanytarsini	813	17	18	12	47 44	4.88 4.57	
	sF/ Orthocladinae sF/ Tanypodinae			3 10	18	23			
	71		809	10	3	5	18	1.87	0.00
	O/ Odonates								0.00
	O/ Lépidoptères		849						0.00
Nor	mbre total d'individus			523	259	197	963	ĺ	
	nbre de Taxons			22	22	22	29	1	
_	imum			1	1	1	<u> </u>	0.00	0.00
	kimum			364	90	30		50.26	51.82
	indice de Shannon						2.97		
	Indice de Simpson						0.27		
	Indice d'Equitabilité						0.61		

RAPPORT FINAL Page 194/216

Petite Rivière, Brasserie Lorraine 08533101

	PETITE RIVIERE - BRAS	SSERIE LORRAINE - PRB							
	12/03/2012			Echantillon	3		Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
TAXC	ONS	Genre ou espèce	SANDRE				N-T	%	%
	ERTIENS		1052			2	2	0.64	0.64
C	D/ Oligochètes		933	13	10		23	7.40	7.40
	F/ Ancylidae		1027		9		9	2.89	
	F/ Thiaridae				6	3	9	2.89	
		Micratya poeyi	20479	1			1	0.32	
		Jonga serrei	20480	5			5	1.61	
		Macrobrachium sp.	3289	12	3		15	4.82	
		M. faustinum	20304	1	1		2	0.64	
	F/ Parastacidae	Cherax quadricarinatus		1			1	0.32	
		Neotrichia sp.	20422		1	1	2	0.64	
	F/ Baetidae	Americabaetis sp.	20430	4	10		14	4.50	
		Callibaetis sp.	20431	1			1	0.32	
		Fallceon ater	20487		2		2	0.64	
	F/ Caenidae	Caenis femina		9	38	3	50	16.08	
	F/ Caenidae	Caenis catherinae			2		2	0.64	
		Tricorythodes griseus	20524			3	3	0.96	
		Terpides sp.		2	13	3	18	5.79	
	F/ Gerridae		734	1			1	0.32	
		Limnogonus sp.	20440	1			1	0.32	
	F/ Veliidae	Rhagovelia sp.	10254	2	1		3	0.96	
		Steinovelia sp.	20447	1			1	0.32	
	F/ Elmidae	Elsianus sp.	20448			1	1	0.32	
	sF/ Ceratopogoninae		822		1	1	2	0.64	
	sF/ Chironominae	Chironomini		5	7	19	31	9.97	
		Tanytarsini		4	39	47	90	28.94	
	sF/ Orthocladinae		813			4	4	1.29	
	sF/ Tanypodinae		809		5		5	1.61	
	sF/ Harrisius			5	4		9	2.89	
	ND			1			1	0.32	
		Enallagma coecum	664		2		2	0.64	
	F/ Libellulidae	ND	696	1	_		1	0.32	
NII-	and the builties of the following			70	454	0.7	044		
	re total d'individus			72	154	87	311		-
	re de Taxons			20	18	11	31	0.00	0.00
Minim				1	1	1		0.00	0.00
Maxin	num			13	39	47		28.94	86.17
ir	ndice de Shannon						3.61		
lr	ndice de Simpson						0.13		
li	ndice d'Equitabilité						0.50		

RAPPORT FINAL Page 195/216

Lézarde, Gué de la Désirade 08521101

	DESIRADE - LEG		Cabaatillaa			Total	Fué a	F 0
13/03/2012			Echantillon:		Dhana C	Total	Fréq.	F. Cur
TAVONO	Commo au combac	CANDDE	Phase A	Phase B	Phase C	N-T	0/	0/
AXONS /ERS	Genre ou espèce	SANDRE				N +	%	4.76
Cl/ Turbellariés		3326						0.95
F/ Dugesiidae		1055		3		3	0.95	0.50
Cl/ Achètes		907						0.00
Cl/ Oligochètes		933	11	1		12	3.81	3.81
MOLLUSQUES		965						44.4
Cl/ Gastéropodes		5123	2					44.4
F/ Bulinidae	Pleiophysal granulata		1			1	0.32	
F/ Physidae	Physa sp.	997	1	1		2	0.63	
F/ Thiaridae			61	58	18	137	43.49	
Cl/ Bivalves		5125						0.00
ARTHROPODES		050						50.7
Cl/ Crustacés		859					4.07	2.86
sCl/ Ostracodes			3	1		4	1.27	1.27
sCl/ Malacostracés								1.59 0.32
O/ Amphipodes F/ Gammaridae		887		1		1	0.32	0.32
O/ Décapodes		007		ı ı		<u> </u>	0.32	1.27
o, Dooupouod	Atya scabra	20308	1		3	3	0.95	1.2
	Macrobrachium sp.	3289	1			1	0.32	
CI/ Insectes			1			<u> </u>		47.9
O/ Trichoptères		181						14.2
	Smicridea sp.	20417		14	21	35	11.11	
	Neotrichia sp.	20422		1		1	0.32	
	Zumatrichia sp.	20424			1	1	0.32	
F/ Philopotamidae	Chimarra sp.	207			1	1	0.32	
F/ Xiphocentronidae	Xiphocentron fuscum	20522		1	6	7	2.22	
O/ Ephéméroptères		348						16.1
F/ Baetidae	Americabaetis sp.	20430		1		1	0.32	
	Fallceon ater	20487		1	3	4	1.27	
F/ Caenidae	Caenis femina		13			13	4.13	
F/ Caenidae	Caenis catherinae	20.400	4	40		4	1.27	
F/ Leptohyphidae	Leptohyphes sp.	20488		16	6	22	6.98	
	Tricorythodes griseus	20524	6	1		1 6	0.32 1.90	
O/ Hétéroptères	Terpides sp.	3155	0			0	1.90	0.00
O/ Coléoptères		3133		1				3.17
F/ Elmidae	Elsianus sp.	20448		9		9	2.86	3.17
17 Enriede	Hexanchorus sp.	20450		1		1	0.32	
O/ Diptères	riexanonorae epi	746		•		•	0.02	12.0
sF/ Ceratopogoninae		822	2			2	0.63	
sF/ Chironominae			6			6	1.90	
sF/ Chironominae	Chironomini		5	2		7	2.22	
	Tanytarsini		9			9	2.86	
sF/ Orthocladinae		813	4	2	1	7	2.22	
sF/ Tanypodinae		809	3	1		4	1.27	
sF/ Harrisius			2			2	0.63	
F/ Empididae	Hemerodromia sp.	832		1		1	0.32	
O/ Odonates			1					0.32
0(1/11/11/11/11/11/11/11/11/11/11/11/11/1	Dythemis sterilis	20493	1			1	0.32	
O/ Lépidoptères		849	1	_			4.00	1.90
F/ Pyralidae		2947		2	4	6	1.90	
Nombre total d'individus			135	119	64	315		
Nombre de Taxons			18	21	10	33		
<i>M</i> inimum			1	1	1		0.00	0.00
Maximum			61	58	21		43.49	50.7
indice de Shannon						3.37		
Indice de Simpson						0.21		
Indice d'Equitabilité						0.67		

RAPPORT FINAL Page 196/216

Suivi DCE 2012 Année 2012

Case Navire, Bourg Schoelcher 08302101

	CASE NAVIRE - BOUR	G SCHOELCHER - CBN							
+	05/03/2012	0 0011022011211 0511		Echantillon	9		Total	Frég.	F. Cum
+	03/03/2012			Phase A	Phase B	Phase C	TOTAL	rreq.	i . Cuiii
A V (ONS	Genre ou espèce	SANDRE	Filase A	Filase B	Filase C	N,T	%	%
	ROZOAIRES / CNIDAIRES	Genre ou espece	3166	6	1		7	0.32	0.32
	ERTIENS		1052		5		5	0.23	0.23
ERS	3								2.59
(Cl/ Turbellariés		3326						0.05
	F/ Dugesiidae		1055		1		1	0.05	
	Cl/ Achètes		907						0.00
	CI/ Oligochètes		933	45	3	7	55	2.54	2.54
	LUSQUES		965						38.63
(Cl/ Gastéropodes		5123	1	1		_	0.00	38.63
-	F/ Ancylidae	Maritima an	1027	4	2	40	6 24	0.28	
+	F/ Neritidae F/ Neritilidae	Neritina sp.	9825	1	8	16 2	3	1.11 0.14	
	F/ Physidae	Physa sp.	997	'	1	1	2	0.14	
+	F/ Thiaridae	r nysa sp.	337	29	406	366	801	37.01	
(Cl/ Bivalves		5125		100	000	001	07.01	0.00
	HROPODES		0123						58.23
	Cl/ Crustacés		859						0.60
	sCl/ Ostracodes			7	1	2	10	0.46	0.46
	sCl/ Malacostracés								0.14
	O/ Amphipodes								0.00
	O/ Décapodes								0.14
		Macrobrachium sp.	3289	1			1	0.05	
		M. faustinum	20304	2			2	0.09	
	Ol/ Insectes								57.62
4	O/ Trichoptères	l	181			1			4.16
4	F/ Helicopsychidae	Helicopsyche sp.	336	1	2		2	0.09	
_		Smicridea sp.	20417		2		2	0.09	
-		Neotrichia sp.	20422	33	2	10	45	2.08	
-		Oxyethira sp.	199	14	_	7	15 9	0.69	
-	F/ Xiphocentronidae	Zumatrichia sp. Xiphocentron fuscum	20424	_	3	14	17	0.42	
-	O/ Ephéméroptères	XIPROCERTION IUSCUM	348	43	10	15	17	0.79	31.47
+	F/ Baetidae	Baetidae sp.	363	6	10	5	12	0.55	31.47
+	F/ Baetidae	Americabaetis sp.	20430	129	9	6	144	6.65	
	17 Daelidae	Fallceon ater	20487	123	- 3	2	2	0.09	
	F/ Caenidae	Caenis sp.	457			1	1	0.05	
	F/ Caenidae	Caenis femina	137	59	2	13	74	3.42	
	F/ Caenidae	Caenis catherinae		8	4		12	0.55	
	F/ Leptohyphidae	Leptohyphes sp.	20488	1	9	5	15	0.69	
		Tricorythodes griseus	20524	101	130	190	421	19.45	
	O/ Hétéroptères		3155						0.18
	F/ Veliidae	Rhagovelia sp.	10254	4			4	0.18	
	O/ Coléoptères								0.65
	F/ Elmidae	Elsianus sp.	20448		5	2	7	0.32	
		Hexanchorus sp.	20450	2	1	4	7	0.32	
	O/ Diptères		746						19.41
4	sF/ Ceratopogoninae		822		2		2	0.09	
+	sF/ Forcypomyinae	Atrigopogon sp.	20490	1	1		2	0.09	-
+	F/ Chironomidae	Chiranamini	807	3		1	4	0.18	-
+	sF/ Chironominae	Chironomini		8 169	1 32	16	9	0.42	-
+	sF/ Orthocladinae	Tanytarsini	813	168 62	52 52	46 18	246 132	11.37 6.10	
+	sF/ Ortnocladinae sF/ Tanypodinae		813	12	1	4	132	0.79	
+	sF/ Harrisius		003	2	'	-	2	0.79	
+	F/ Empididae	Hemerodromia sp.	832		2	1	3	0.03	
+	F/ Ephydridae		844	3	<u> </u>		3	0.14	
\top	O/ Odonates			1 -					0.83
\top	Zygoptera ND			4			4	0.18	1
		Enallagma coecum	664	1			1	0.05	
Ť		Ischnura ramburii	20458	12			12	0.55	
	F/ Libellulidae	ND	696	1			1	0.05	
C	D/ Lépidoptères		849						0.92
	F/ Pyralidae		2947	1	3	16	20	0.92	
omh	ore total d'individus			774	705	756	2164		
	re de Taxons			33	32	27	44		
	ium			1	1	1		0.00	0.00
	mum			168	406	366		37.01	58.23
,	ndice de Shannon						3.15		
li	ndice de Simpson						0.20		
le	ndice d'Equitabilité						0.58		
	ndice de Simpson ndice d'Equitabilité							0.20 0.58	

RAPPORT FINAL Page 197/216

Monsieur, Pont de Montgérald 08412102

	RIVIERE MONSIEUR - N	MONTGERALD - MOM							
	08/03/2012			Echantillon			Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
	XONS	Genre ou espèce	SANDRE				N-T	%	%
	MERTIENS		1052	2		1	3	0.27	0.27
	MATHELMINTHES		3111			1	1	0.09	0.09
۷E	-								26.81
	Cl/ Turbellariés		3326						0.00
	Cl/ Achètes		907						0.00
	Cl/ Oligochètes		933	84	128	85	297	26.81	26.81
MC	DLLUSQUES		965						26.81
	Cl/ Gastéropodes		5123	4	33	1	40	4 4 -	26.81
	F/ Ancylidae		1027	12	4	1	13	1.17	
	F/ Hydrobiidae	A	973	4	1	2	7	0.63	
	F/ Neritidae	Neritina sp.	9825	4	8	93	105	9.48	
	F/ Physidae	Physa sp.	997	1	400	1	2	0.18	
	F/ Thiaridae			13	133	24	170	15.34	
	Cl/ Bivalves		5125						0.00
AR	THROPODES		050						46.03
	Cl/ Crustacés		859		_				1.71
	sCl/ Ostracodes			4	1		5	0.45	0.45
	sCl/ Malacostracés								1.26
	O/ Amphipodes								0.00
	O/ Décapodes			1					1.26
		Macrobrachium sp.	3289	10	1		11	0.99	
		M. faustinum	20304	2		1	3	0.27	
	CI/ Insectes								44.31
	O/ Trichoptères		181						0.81
		Smicridea sp.	20417		2		2	0.18	
		Neotrichia sp.	20422	4	3		7	0.63	
	O/ Ephéméroptères		348	35	20	5			14.08
	F/ Baetidae	Baetidae sp.	363	8			8	0.72	
	F/ Baetidae	Americabaetis sp.	20430	54	3	2	59	5.32	
	F/ Caenidae	Caenis sp.	457	3			3	0.27	
	F/ Caenidae	Caenis femina		38	13	19	70	6.32	
	F/ Leptohyphidae	Leptohyphes sp.	20488		11	1	12	1.08	
		Tricorythodes griseus	20524		3	1	4	0.36	
	O/ Hétéroptères		3155						0.18
	F/ Veliidae	Rhagovelia sp.	10254	2			2	0.18	
	O/ Coléoptères								0.09
		Hexanchorus sp.	20450			1	1	0.09	
	O/ Diptères		746						28.97
	Diptère ND				1		1	0.09	
	sF/ Ceratopogoninae		822	1			1	0.09	
	sF/ Dasyheleneidae				1		1	0.09	
	F/ Chironomidae		807	2	7		9	0.81	
	sF/ Chironominae	Chironomini		52	14		66	5.96	
		Tanytarsini		31	94	38	163	14.71	
	sF/ Orthocladinae		813	9	46	4	59	5.32	
	sF/ Tanypodinae		809	9	2	1	12	1.08	
	F/ Empididae	Hemerodromia sp.	832		5	3	8	0.72	
	F/ Psychodidae	autre sp	783	1			1	0.09	
	O/ Odonates								0.18
		Ischnura ramburii	20458	2			2	0.18	
	O/ Lépidoptères		849						0.00
Nor	mbre total d'individus			392	530	285	1108		
	mbre de Taxons			27	22	203	32		
	imum			1	1	1	32	0.00	0.00
				84	133	93		26.81	46.03
ıvia)	ximum	1		04	133	93		ا ۵.0ک	40.03

RAPPORT FINAL Page 198/216

Petite Lézarde, Pont Belle Ile 08504101

	PETITE LEZARDE - PO	NI BELLE ILE - PLB							
	01/03/2012			Echantillons	S		Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
TAX	ONS	Genre ou espèce	SANDRE				N.T	%	%
	ERTIENS		1052	1		2	3	0.15	0.15
VERS			1002	· ·		_		0.10	9.46
	Cl/ Turbellariés		3326						0.00
	Cl/ Achètes		907						0.00
	Cl/ Oligochètes		933	180	8	7	195	9.46	9.46
	-			100	0	,	195	9.46	
	LUSQUES		965						9.36
(CI/ Gastéropodes		5123	1	4	5			9.36
	F/ Ancylidae		1027	17			17	0.82	
	F/ Bulinidae	Pleiophysal granulata		28	1		29	1.41	
	F/ Thiaridae			50	65	32	147	7.13	
(Cl/ Bivalves		5125						0.00
ARTI	HROPODES								81.03
(Cl/ Crustacés		859						0.58
	sCl/ Ostracodes			2		1	3	0.15	0.15
_	sCl/ Malacostracés								0.44
	O/ Amphipodes								0.00
									0.44
-	O/ Décapodes	Minute	20470				_	0.00	0.44
_		Micratya poeyi	20479	2	2	2	6	0.29	
_		Macrobrachium sp.	3289	1	2		3	0.15	L
(CI/ Insectes								80.45
	O/ Trichoptères		181						2.96
		Smicridea sp.	20417	1		26	27	1.31	
	F/ Hydroptilidae		193			1	1	0.05	
		Neotrichia sp.	20422	2	11	9	22	1.07	
		Zumatrichia sp.	20424			2	2	0.10	
	F/ Xiphocentronidae	Xiphocentron fuscum	20522		5	4	9	0.44	
	O/ Ephéméroptères	xipricocriticii idecum	348		4	5		0.11	38.62
		Destides on		_			44	0.50	30.02
-	F/ Baetidae	Baetidae sp.	363	2	3	6	11	0.53	
_	F/ Baetidae	Americabaetis sp.	20430	2	_	16	18	0.87	
		Fallceon ater	20487	1	9	19	29	1.41	
	F/ Caenidae	Caenis sp.	457	72	2		74	3.59	
	F/ Caenidae	Caenis femina		408	2	14	424	20.57	
	F/ Caenidae	Caenis catherinae		76	5	2	83	4.03	
	F/ Leptohyphidae	Leptohyphes sp.	20488		77	69	146	7.08	
		Tricorythodes griseus	20524		2	1	3	0.15	
	F/ Leptophlebiidae	interipaneaco gricoac	20524		2	1	3	0.15	
	F/ Leptophlebiidae	Hagenulopsis guadeloupensis	20489	1	2	•	3	0.15	
	17 Leptopi liebildae	Terpides sp.	20403	2			2	0.10	
	0/11/4/ ===+>===	Terpides sp.	21.55					0.10	0.40
	O/ Hétéroptères		3155				4.0		0.49
	F/ Veliidae	Rhagovelia sp.	10254	7	1	2	10	0.49	
	O/ Coléoptères								0.39
		Laccophilus sp.	527	1			1	0.05	
	F/ Elmidae	Elsianus sp.	20448		1	1	2	0.10	
	F/ Hydraenidae	Hydraena sp.	608			1	1	0.05	
	F/ Hydrophilidae	Tropisternus sp.	20451	3	1		4	0.19	
	O/ Diptères	,, ,, ,, ,,	746						37.75
	sF/ Ceratopogoninae		822	1	4	4	8	0.39	37.70
-	sF/ Ceratopogoninae sF/ Forcypomyinae	Atrigopogon sp.	20490	3	1	4	4		1
		Aurgopogori sp.		-	l I			0.19	-
_	F/ Chironomidae	1	807	2		1	3	0.15	-
	sF/ Chironominae	Chironomini		75	35	6	116	5.63	
		Tanytarsini		10	30	26	66	3.20	
	sF/ Orthocladinae		813	3	445	64	512	24.84	
	sF/ Tanypodinae		809	14	30	10	54	2.62	
	sF/ Harrisius			1			1	0.05	
	F/ Empididae	Hemerodromia sp.	832	1	1	6	8	0.39	
	F/ Psychodidae	autre sp	783	2		-	2	0.10	
-	17 1 Gy Gridalado	Maruina sp.	20456	1		3	4	0.10	
-	O/ Odonatos	Waruma sp.	20430	· ·		3		0.13	0.05
	O/ Odonates		<u> </u>	1			_	0.05	0.00
-	ND		0.40	1			1	0.05	
(O/ Lépidoptères		849						0.19
	F/ Pyralidae		2947	1	2	1	4	0.19	
	ore total d'individus	<u> </u>		974	757	349	2061		
\hmh									
	ore de Taxons			34	29	32	42	0.0-	
Nomb				1	1	1		0.00	0.00
Nomb Vlinim	num				115	69		24.84	81.03
Nomb Minim	num			408	445	69		24.04	
Nomb Minim Maxir	num			408	445	69	3.59	24.04	
Nomb Minim Maxin	num num ndice de Shannon			408	445	69		24.04	
Nomb Minim Maxir ii	num mum			408	445	69	3.59 0.13	24.04	

RAPPORT FINAL Page 199/216

Rivière Blanche, Pont de l'Alma 08511101

	RIVIERE BLANCHE - P			Cohontillon			Total	Fréa	F 0
	01/03/2012			Echantillon:		Dhana C	Total	Fréq.	F. Cum
TAXC	NIC	Commo ou comboo	CANDDE	Phase A	Phase B	Phase C	N-T	%	%
VERS		Genre ou espèce	SANDRE				IV +=	%	1.38
	/		3326						1.38
	F/ Dugesiidae		1055			3	3	1.38	1.30
(A Achètes		907			3	3	1.50	0.00
	LUSQUES		965						0.00
	Cl/ Gastéropodes		5123	1		1			0.00
	I/ Bivalves		5125	· ·					0.00
	ROPODES		3123						98.62
	Cl/ Crustacés		859						5.99
	sCl/ Malacostracés								5.99
	O/ Amphipodes								0.00
	O/ Décapodes								5.99
		Micratya poeyi	20479	8	1	3	12	5.53	
		M. faustinum	20304	1			1	0.46	
C	CI/ Insectes								92.63
	O/ Trichoptères		181						11.98
		Smicridea sp.	20417	1		18	19	8.76	
		Cerasmatrichia sp.	20420			1	1	0.46	
	F/ Philopotamidae	Chimarra sp.	207			1	1	0.46	
		Polyplectropus sp.	20428			1	1	0.46	
	F/ Xiphocentronidae	Xiphocentron fuscum	20522		2	2	4	1.84	
	O/ Ephéméroptères		348						58.06
	F/ Baetidae	Baetidae sp.	363	10	1	2	13	5.99	
	F/ Baetidae	Americabaetis sp.	20430	6	1		7	3.23	
		Cloedes caraibensis	20486	17		1	18	8.29	
		Fallceon ater	20487	7	5	19	31	14.29	
	F/ Leptohyphidae	Leptohyphes sp.	20488	3	5	16	24	11.06	
		Tricorythodes griseus	20524	25	2	6	33	15.21	
	O/ Hétéroptères		3155	1					0.46
	F/ Veliidae	Rhagovelia sp.	10254	1			1	0.46	
	O/ Coléoptères								10.14
	F/ Elmidae	Elsianus sp.	20448	2		1	3	1.38	
		Hexanchorus sp.	20450	2	1	5	8	3.69	
	F/ Psephenidae	Psephenops sp.	20452	1	1	9	11	5.07	
	O/ Diptères		746						9.68
	sF/ Chironominae	Chironomini				1	1	0.46	
	- F/ Outher de d'acc	Tanytarsini	012	1		4	1	0.46	
	sF/ Orthocladinae		813	4		1	5	2.30	
	sF/ Tanypodinae sF/ Harrisius		809	2	4	3	5	2.30	
	F/ Empididae	Hamaradramia	832	1	1	3 1	4 2	1.84	
		Hemerodromia sp.	832	'		1	1	0.92	
	F/ Ephydridae		757	1		1	2	0.46	
	F/ Limoniidae O/ Odonates		/5/	'		'		0.92	2.30
	Or Judilates	Enallagma coecum	664	2			2	0.92	2.30
	F/ Libellulidae	ND	696	1		2	3	1.38	
_	D/ Lépidoptères	140	849	'			3	1.50	0.00
			043						0.00
	re total d'individus			98	20	102	217		
	re de Taxons			22	10	24	28		
Minim				1	1	1		0.00	0.00
Maxin	num			25	5	19		15.21	98.62
ir	ndice de Shannon						3.99		
Į.	odico do Simpoor								
	ndice de Simpson						0.08		
lr	ndice d'Equitabilité						0.83		

Grande Rivière Pilote, Amont Bourg Grande Rivière Pilote 08813103

_	GRANDE RIVIERE PILO	TE - AMONT BOURG - PIBam							
	06/03/2012			Echantillons			Total	Fréq.	F. Cun
				Phase A	Phase B	Phase C			
TAXON	NS	Genre ou espèce	SANDRE				N 🖅	%	%
VERS									0.00
	Turbellariés		3326						0.00
	Achètes		907						0.00
	USQUES		965						10.06
CI/	Gastéropodes		5123			_			10.06
01/	F/ Thiaridae		E40E	23		8	31	10.06	l
	Bivalves		5125						0.00
	ROPODES		050						89.94
_	Crustacés		859						34.42
	CI/ Malacostracés								34.74
)/ Amphipodes								0.00
C	D/ Décapodes	AVD.	060					0.00	34.74
	F/ Atyidae	ND	860	1		_	1	0.32	
		Atya scabra	20308			5	5	1.62	
		Atya innocous	20305		1	3	4	1.30	
		Micratya poeyi	20479		40	25	65	21.10	
	E/X: 1	Jonga serrei	20480	3	_	_	3	0.97	
	F/ Xiphocaridae	Xiphocaris elongata	20520	3	7	7	17	5.52	
		Macrobrachium sp.	3289	1	1	8	10	3.25	
01/		M. acanthurus		2			2	0.65	l
	Insectes								55.19
C	0/ Trichoptères		181						1.30
		Neotrichia sp.	20422		4		4	1.30	
C)/ Ephéméroptères		348		4				24.68
	F/ Baetidae	Baetidae sp.	363		3		3	0.97	
	F/ Baetidae	Americabaetis sp.	20430	6	1	_	7	2.27	
		Fallceon ater	20487		2	9	11	3.57	
	F/ Caenidae	Caenis femina		9	21	10	40	12.99	
	F/ Caenidae	Caenis catherinae		1			1	0.32	
	F/ Leptohyphidae		20434		1	1	2	0.65	
	F/ Leptohyphidae	Leptohyphes sp.	20488		5	6	11	3.57	
		Terpides sp.		1			1	0.32	
C)/ Hétéroptères		3155						2.27
	F/ Gerridae		734	4			4	1.30	
	F/ Nepidae	Ranatra sp.	727	1			1	0.32	
	F/ Mesoveliidae	Mesovelia sp.	742	2			2	0.65	
C	0/ Coléoptères		600					0.00	0.32
	F/ Hydraenidae	Hydraena sp.	608	1			1	0.32	
C	D/ Diptères		/46						25.97
	Diptère ND			1			1	0.32	
	sF/ Ceratopogoninae		822			1	1 05	0.32	
	sF/ Chironominae	Chironomini		23	2	10	35	11.36	
	-5/0 :	Tanytarsini	010	11	16	9	36	11.69	
	sF/ Orthocladinae		813	1	1	2	4	1.30	
	sF/ Tanypodinae		809	1	1		2	0.65	
	sF/ Harrisius				1		1	0.32	L
C	0/ Odonates			_					0.65
	F/ Coenagrionidae	ND	658	2			2	0.65	L
0/	Lépidoptères	ļ	849						0.00
	e total d'individus			97	111	104	308		
	e de Taxons			20	17	14	30		
Minimur				1	1	1		0.00	0.00
Maximu	ım			23	40	25		21.10	89.94
inc	dice de Shannon						3.77		
Inc	dice de Simpson						0.10		
II IC									
	dice d'Equitabilité						0.77		

Rivière du Carbet, Fond Baise 08322101

	RIVIERE CARBET - FON 5/03/2012	ND DAIGE - OAT		Echantillons			Total	Fréq.	F. Cum
0	3/03/2012			Phase A	Phase B	Phase C	Total	rieq.	r. Cuii
TAXONS		Genre ou espèce	SANDRE	T Hube A	T Hase B	T Huse o	N-T	%	%
HYDRACAI	RIENS		906		1		1	0.13	0.13
VERS					-				0.00
Cl/ Turl	bellariés		3326						0.00
Cl/ Ach	nètes		907						0.00
MOLLUSQ			965						42.95
Cl/ Gas	stéropodes		5123		2	9			42.95
F	/ Neritidae	Neritina sp.	9825		4	7	11	1.41	
F	7 Thiaridae			275	18	31	324	41.54	
Cl/ Biva	alves		5125						0.00
ARTHROP	ODES								56.92
Cl/ Cru	stacés		859						0.51
sCl/ O	stracodes			3	1		4	0.51	0.51
sCl/ M	lalacostracés								0.00
O/ Ar	nphipodes								0.00
O/ Dé	capodes								0.00
Cl/ Inse	ectes								56.41
O/ Tr	ichoptères		181						8.85
	/ Helicopsychidae	Helicopsyche sp.	336		2	6	8	1.03	
		Smicridea sp.	20417		14	31	45	5.77	
		Neotrichia sp.	20422	1	4	1	6	0.77	
		Zumatrichia sp.	20424		1	1	2	0.26	
F	/ Xiphocentronidae	Xiphocentron fuscum	20522		5	3	8	1.03	
	héméroptères	·	348						16.79
F	/ Baetidae	Americabaetis sp.	20430			4	4	0.51	
		Fallceon ater	20487	1	6	5	12	1.54	
F	/ Caenidae	Caenis femina			3	2	5	0.64	
F	/ Caenidae	Caenis catherinae			3	1	4	0.51	
F	/ Leptohyphidae		20434			10	10	1.28	
F	/ Leptohyphidae	Leptohyphes sp.	20488		22	66	88	11.28	
		Tricorythodes griseus	20524	1		6	7	0.90	
		Terpides sp.				1	1	0.13	
O/ Hé	téroptères		3155						0.00
O/ Co	oléoptères								2.18
F	/ Elmidae	Elsianus sp.	20448	3	2	5	10	1.28	
		Hexanchorus sp.	20450		5	2	7	0.90	
O/ Di	ptères		746						28.46
	sF/ Ceratopogoninae		822	2	2	6	10	1.28	
F.	/ Chironomidae		807		5	1	6	0.77	
	sF/ Chironominae	Chironomini		4	2	3	9	1.15	
		Tanytarsini				2	2	0.26	
	sF/ Orthocladinae		813	118	38	31	187	23.97	
	sF/ Tanypodinae		809			2	2	0.26	
	sF/ Harrisius				3	1	4	0.51	
	/ Empididae	Hemerodromia sp.	832			2	2	0.26	
	donates								0.00
	oidoptères		849						0.13
F	/ Pyralidae		2947		1		1	0.13	
Nombre tota	al d'individus			408	144	239	780		
Nombre de				9	22	26	28		
Minimum				1	1	1		0.00	0.00
Maximum				275	38	66		41.54	56.92
indice	de Shannon						2.80		
	de Simpson						0.25		
Indice	d'Equitabilité						0.58		

Rivière Madame, Pont de Chaines 08423101

	RIVIERE MADAME - PO	ONT DE CHAINES - MAC							
	08/03/2012			Echantillons	S		Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
TAX	ONS	Genre ou espèce	SANDRE		1 11.000 2		N,T	%	%
	ROZOAIRES / CNIDAIRES		3166	5		1	6	0.21	0.21
NEN	IERTIENS		1052	5			5	0.18	0.18
NEN	IATHELMINTHES		3111	3			3	0.11	0.11
VER	S								1.06
	Cl/ Turbellariés		3326						0.00
	Cl/ Achètes		907						0.00
	Cl/ Oligochètes		933	14	15	1	30	1.06	1.06
МО	LLUSQUES		965						78.94
	Cl/ Gastéropodes		5123			1			78.94
	F/ Ancylidae		1027	1			1	0.04	
	F/ Hydrobiidae		973	1		1	2	0.07	
	F/ Neritidae	Neritina sp.	9825		17	31	48	1.70	
	F/ Thiaridae			86	1081	1016	2183	77.14	
	Cl/ Bivalves		5125	- 00		10.0	2.00		0.00
ΔRT	THROPODES		3123						19.51
Αιν.	Cl/ Crustacés		859						3.85
	sCl/ Ostracodes		333	23		1	24	0.85	0.85
	sCl/ Malacostracés			23		'	24	0.00	3.00
	O/ Amphipodes								0.00
				_					
	O/ Décapodes	langa agrasi	20480	3 1	1		1	0.04	3.00
	E/X/:1	Jonga serrei							
	F/ Xiphocaridae	Xiphocaris elongata	20520	19	1		20	0.71	
		Macrobrachium sp.	3289	45	2	4	51	1.80	
		M. faustinum	20304	12		1	13	0.46	
	Cl/ Insectes								15.65
	O/ Trichoptères		181						0.57
		Neotrichia sp.	20422	4	9	3	16	0.57	
	O/ Ephéméroptères		348		6	3			13.07
	F/ Baetidae	Americabaetis sp.	20430	160	3	6	169	5.97	
		Fallceon ater	20487		1	1	2	0.07	
	F/ Caenidae	Caenis sp.	457	54			54	1.91	
	F/ Caenidae	Caenis femina		64	7	2	73	2.58	
	F/ Caenidae	Caenis catherinae		34	2		36	1.27	
	F/ Leptohyphidae	Leptohyphes sp.	20488		1	10	11	0.39	
		Tricorythodes griseus	20524		6	19	25	0.88	
	O/ Hétéroptères		3155						0.07
	F/ Mesoveliidae	Mesovelia sp.	742	1			1	0.04	
	F/ Veliidae	Rhagovelia sp.	10254	1			1	0.04	
	O/ Coléoptères								0.11
	F/ Elmidae	Elsianus sp.	20448	2	1		3	0.11	
	O/ Diptères		746						0.46
	sF/ Chironominae	Chironomini				1	1	0.04	
		Tanytarsini				1	1	0.04	1
	sF/ Orthocladinae		813		4		4	0.14	1
	sF/ Tanypodinae		809	2	2	1	5	0.18	
	sF/ Harrisius		303	1			1	0.04	1
	F/ Empididae	Hemerodromia sp.	832	'	1		1	0.04	
	O/ Odonates		552	1	<u>'</u>		<u> </u>	3.54	1.38
	F/ Coenagrionidae	ND	658	3			3	0.11	1.50
	17 Cochagnoniae	Enallagma coecum	664	2			2	0.11	
		Ischnura ramburii	20458	26			26	0.07	1
	F/ Libellulidae	ND	696	8			8	0.92	1
	O/ Lépidoptères	IND		0			U	0.20	0.00
	o rehinohieres		849				<u> </u>		0.00
Non	bre total d'individus			580	1160	1104	2830		
Non	bre de Taxons			27	18	19	34		
Mini	mum			1	1	1		0.00	0.00
Max	imum			160	1081	1016		77.14	78.94
	indice de Shannon						1.65		
'	muice de Shannon						1.05		
	Indice de Simpson						0.60		
	Indice de Simpson Indice d'Equitabilité						0.60		

Rivière du Lorrain, Amont Confluence Pirogue 08203101

		AMONT CONFLUENCE PIROGUE -	LOF	- · · · · ·				- /	-
	07/03/2012			Echantillon			Total	Fréq.	F. Cur
		,		Phase A	Phase B	Phase C		21	
AXONS		Genre ou espèce	SANDRE		4		N.₹T	%	%
01/ 0	F/ Dugesiidae		1055		1		1	0.31	0.04
CI/ O	ligochètes		933	2	1		3	0.94	0.94
	F/ Ancylidae	At to	1027	6			6	1.88	
	F/ Neritidae	Neritina sp.	9825		9	2	11	3.45	
- 01/	F/ Thiaridae			2	4	2	8	2.51	1 0 5
SCI/	Ostracodes	Mismakasasasi	20470	8			8	2.51	2.51
		Micratya poeyi	20479	5			5	1.57	
	E / O-l tid	M. carcinus	20295	2			2	0.63	
	F/ Calamoceratidae	Phylloicus sp.	20413	4			4	1.25	
	F/ Ecnomidae	Austrotinodes sp.	20414			1	1	0.31	
		Hydroptila sp.	200	1			1	0.31	
		Neotrichia sp.	20422	1			1	0.31	
	5 / 5 1	Zumatrichia sp.	20424			1	1	0.31	
	F/ Polycentropodidae		223	1			1	0.31	
		Polyplectropus sp.	20428	1	1		2	0.63	
	F/ Baetidae	Americabaetis sp.	20430	1			1	0.31	
		Cloedes caraibensis	20486	2			2	0.63	
		Fallceon ater	20487	2	3	1	6	1.88	
	F/ Caenidae	Caenis femina		2			2	0.63	
	F/ Leptohyphidae	Leptohyphes sp.	20488	1	4	4	9	2.82	
		Tricorythodes griseus	20524	7			7	2.19	
	F/ Leptophlebiidae		20524	2			2	0.63	
	F/ Leptophlebiidae	Hagenulopsis guadeloupensis	20489		1		1	0.31	
		Terpides sp.		2			2	0.63	
	F/ Elmidae	Elsianus sp.	20448	4	2	1	7	2.19	
	F/ Psephenidae	Psephenops sp.	20452	2		1	3	0.94	
	sF/ Ceratopogoninae		822			1	1	0.31	
		Tanytarsini		3			3	0.94	
	sF/ Orthocladinae		813	129	38	12	179	56.11	
	sF/ Tanypodinae		809	26	1		27	8.46	
	sF/ Harrisius			8			8	2.51	
	F/ Empididae	Hemerodromia sp.	832	1			1	0.31	
	F/ Limoniidae		757	3			3	0.94	
ombre to	otal d'individus			228	65	26	319		
ombre d	le Taxons			27	11	10	33		
inimum				1	1	1		0.00	0.00
laximum				129	38	12		56.11	90.9
io al: -	o do Channe						2.00		
	e de Shannon						2.90		
	e de Simpson						0.33		
Indic	e d'Equitabilité						0.40		

Rivière des Coulisses, Petit Bourg 08803101

COULISSES - PETIT BO			Esta estilla e			T-4-1	F= 4 =:	F 0
13/03/2012			Echantillon			Total	Fréq.	F. Cum
			Phase A	Phase B	Phase C			
TAXONS	Genre ou espèce	SANDRE				N-T	%	%
BRYOZOAIRES		1087	6	1		7	1.02	1.02
NEM ERTIENS		1052			1	1	0.15	0.15
VERS								9.50
Cl/ Turbellariés		3326						0.00
Cl/ Achètes		907						0.00
Cl/ Oligochètes		933	8	6	51	65	9.50	9.50
MOLLUSQUES		965						2.05
Cl/ Gastéropodes		5123						2.05
F/ Ancylidae		1027	2	8	3	13	1.90	
F/ Thiaridae					1	1	0.15	
Cl/ Bivalves		5125						0.00
ARTHROPODES								87.28
Cl/ Crustacés		859						6.87
sCl/ Malacostracés								6.87
O/ Amphipodes								0.00
O/ Décapodes				1				6.87
	Jonga serrei	20480	14	3		17	2.49	
	Macrobrachium sp.	3289	19	11		30	4.39	
Cl/ Insectes								80.41
O/ Trichoptères		181						4.09
	Smicridea sp.	20417		2		2	0.29	
	Neotrichia sp.	20422	1	7	18	26	3.80	
O/ Ephéméroptères		348						15.79
F/ Baetidae	Americabaetis sp.	20430	5	10	3	18	2.63	
	Fallceon ater	20487			1	1	0.15	
F/ Caenidae	Caenis femina		8	39	29	76	11.11	
F/ Caenidae	Caenis catherinae			4		4	0.58	
	Terpides sp.			9		9	1.32	
O/ Hétéroptères		3155						1.17
	Rheumatobates sp.	20441	1			1	0.15	
F/ Veliidae	Rhagovelia sp.	10254		7		7	1.02	
O/ Coléoptères								0.15
	Hexanchorus sp.	20450		1		1	0.15	
O/ Diptères	·	746						59.21
sF/ Ceratopogoninae		822	1			1	0.15	
sF/ Forcypomyinae	Atrigopogon sp.	20490	1			1	0.15	
sF/ Chironominae	Chironomini		11	1	12	24	3.51	
	Tanytarsini		43	108	130	281	41.08	
sF/ Orthocladinae		813		3	74	77	11.26	
sF/ Tanypodinae		809	2	14	4	20	2.92	
sF/ Harrisius				1		1	0.15	
O/ Odonates								0.00
O/ Lépidoptères		849						0.00
		0.19						0.00
Nombre total d'individus			122	236	327	684		
Nombre de Taxons			14	19	12	24		
Minimum			1	1	1		0.00	0.00
Maximum			43	108	130		41.08	87.28
indice de Shannon						3.03		
Indice de Simpson						0.21		
Indice d'Equitabilité						0.66		

Rivière du Lorrain, Séguineau 08205101

07/03/2		SEGUINEAU - LOS		Echantillon	9		Total	Frég.	F. Cum
01703/2	2012			Phase A	Phase B	Phase C	Total	rreq.	T. Out
TAXONS		Genre ou espèce	SANDRE	T Hase A	T Hase B	T Hase O	N-T	%	%
HYDROZOAIRES	/ CNIDAIRES		3166	1			1	0.22	0.22
NEM ERTIENS			1052	1			1	0.22	0.22
VERS									1.79
Cl/ Turbellari	és		3326						0.22
F/ Duge	esiidae		1055			1	1	0.22	
Cl/ Achètes			907						0.00
Cl/ Oligochèt	tes		933	5	1	1	7	1.57	1.57
MOLLUSQUES			965						14.13
Cl/ Gastérop	odes		5123	8	5				13.90
F/ Nerit	tidae	Neritina sp.	9825		12	13	25	5.61	
F/ Nerit	tilidae				1	2	3	0.67	
F/ Thia	ridae			22	7	5	34	7.62	
Cl/ Bivalves			5125						0.22
F/ Sph	aeriidae	Pisidium sp.	1043	1			1	0.22	
ARTHROPODES									83.63
Cl/ Crustacé	S		859						3.59
sCl/ Ostrace	odes			3			3	0.67	0.67
sCl/ Malaco	stracés								2.91
O/ Amphi									0.00
O/ Décapo				1					2.91
		Micratya poeyi	20479	7	2		9	2.02	
		Macrobrachium sp.	3289	3			3	0.67	
		M. faustinum	20304	1			1	0.22	
Cl/ Insectes									80.04
O/ Trichop	otères		181						1.57
		Smicridea sp.	20417		1	3	4	0.90	
		Neotrichia sp.	20422	3			3	0.67	
O/ Ephém	éroptères		348		1				30.49
F/ Baet	tidae	Baetidae sp.	363	2	2	4	8	1.79	
F/ Baet	tidae	Americabaetis sp.	20430	81		7	88	19.73	
F/ Cae	nidae	Caenis femina		10			10	2.24	
F/ Lept	ohyphidae	Leptohyphes sp.	20488	1	10	9	20	4.48	
		Tricorythodes griseus	20524	4	2		6	1.35	
F/ Lept	ophlebiidae	Hagenulopsis guadeloupensis	20489	1		1	2	0.45	
		Terpides sp.		2			2	0.45	
O/ Hétéro	ptères		3155						0.00
O/ Coléop	tères								0.90
F/ Elmid	dae	Elsianus sp.	20448		1	2	3	0.67	
		Hexanchorus sp.	20450			1	1	0.22	
O/ Diptère			746						46.19
	eratopogoninae		822	3	2		5	1.12	
sF/ Cl	hironominae	Chironomini		20			20	4.48	
		Tanytarsini		6	1		7	1.57	
sF/ O	rthocladinae		813	157	6	6	169	37.89	
sF/ Ta	anypodinae		809	4		1	5	1.12	
O/ Odonat									0.00
O/ Lépidop			849						0.90
F/ Pyra	ılidae		2947	4			4	0.90	
Nombre total d'inc	dividue			351	54	56	446		
Nombre de Taxo				25	15	14	29		
Minimum				1	1	1		0.00	0.00
Maximum				157	12	13		37.89	83.63
WANTUIT				107	14	10		01.00	33.03
indice de Sh	annon						3.22		
Indice de Sir							0.20		
Indice d'Equi	-								
iriaice a Equi	laville						0.66		

Rivière du Galion, Grand Galion 08225101

	GALION - GRAND GAL	ION - GAG							
	09/05/2012			Echantillons			Total	Fréq.	F. Cum
TAYONO		0	OANDDE	Phase A	Phase B	Phase C		0/	0/
TAXONS VERS		Genre ou espèce	SANDRE				N-T	%	0.32
	urbellariés		3326						0.00
	chètes		907						0.00
	ligochètes		933	1			1	0.32	0.00
MOLLUS			965	!			'	0.52	6.05
	astéropodes		5123						6.05
Oi/ O	F/ Ancylidae		1027	2			2	0.64	0.00
	F/ Physidae	Physa sp.	997	1			1	0.32	
	F/ Thiaridae	T Hysα 3β.	337	3	9	4	16	5.10	
CI/ Bi	ivalves		5125					0.10	0.00
ARTHRO			3123						93.63
	rustacés		859						12.10
	Ostracodes			2			2	0.64	0.64
	Malacostracés			_				0.01	11.46
	Amphipodes								0.00
	Décapodes								11.46
		Atya scabra	20308			3	3	0.96	1
		Atya innocous	20305			1	1	0.32	
		Micratya poeyi	20479		8	14	22	7.01	
		Macrobrachium sp.	3289	1	7	2	10	3.18	
Cl/ In	sectes	inderegraemam epi	3207			_		00	81.53
	Trichoptères		181						1.27
		Smicridea sp.	20417			1	1	0.32	
		Neotrichia sp.	20422	2	1		3	0.96	
O/ E	- Ephéméroptères		348						18.79
	F/ Baetidae	Americabaetis sp.	20430	3		1	4	1.27	
		Fallceon ater	20487			1	1	0.32	
	F/ Caenidae	Caenis femina		40			40	12.74	
	F/ Caenidae	Caenis catherinae		4			4	1.27	
	F/ Leptohyphidae	Leptohyphes sp.	20488			1	1	0.32	
		Tricorythodes griseus	20524			1	1	0.32	
		Terpides sp.		7		1	8	2.55	
O/ I	Hétéroptères		3155						0.64
	F/ Veliidae	Rhagovelia sp.	10254		1	1	2	0.64	
0/ 0	Coléoptères								0.64
	F/ Elmidae	Elsianus sp.	20448	1	1		2	0.64	
O/ [Diptères		746						60.19
	sF/ Ceratopogoninae		822			1	1	0.32	
	sF/ Chironominae	Chironomini		29			29	9.24	
		Tanytarsini		14	6	1	21	6.69	
	sF/ Orthocladinae		813	16	53	40	109	34.71	
	sF/ Tanypodinae		809	23	3	2	28	8.92	
	sF/ Harrisius			1			1	0.32	
	Odonates								0.00
O/ Le	épidoptères		849						0.00
Nombre to	otal d'individus			150	89	75	314		
	de Taxons			17	9	16	26		
Minimum				1	1	1		0.00	0.00
Maximum				40	53	40		34.71	93.63
	e de Shannon						3.29		
	e de Simpson						0.16		
Indic	e d'Equitabilité						0.70		

Lézarde, Pont RN1 08521102

	LEZARDE - PONT RN1	- LLF							
	14/03/2012			Echantillon			Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
TAX		Genre ou espèce	SANDRE				N-T	%	%
NEMI	ERTIENS		1052			1	1	0.23	0.23
	F/ Dugesiidae		1055	1			1	0.23	
(CI/ Oligochètes		933	3	1	1	5	1.15	1.15
	F/ Thiaridae				2	1	3	0.69	
		Micratya poeyi	20479	15	2	7	24	5.52	
		Jonga serrei	20480	2			2	0.46	
		Macrobrachium sp.	3289		1		1	0.23	
		M. faustinum	20304		2	9	11	2.53	
		Smicridea sp.	20417			1	1	0.23	
		Neotrichia sp.	20422	2	1	7	10	2.30	
	F/ Baetidae	Americabaetis sp.	20430	1	1	15	17	3.91	
		Fallceon ater	20487			3	3	0.69	
	F/ Caenidae	Caenis sp.	457	1			1	0.23	
	F/ Caenidae	Caenis femina		69		4	73	16.78	
	F/ Caenidae	Caenis catherinae		20			20	4.60	
	F/ Leptohyphidae	Leptohyphes sp.	20488	16	3	33	52	11.95	
		Tricorythodes griseus	20524	20	4	22	46	10.57	
		Terpides sp.		5			5	1.15	
	F/ Elmidae	Elsianus sp.	20448			1	1	0.23	
	sF/ Ceratopogoninae		822	1			1	0.23	
	sF/ Chironominae			1			1	0.23	
	sF/ Chironominae	Chironomini		31			31	7.13	
		Tanytarsini		16	33	28	77	17.70	
	sF/ Orthocladinae	-	813	15	6	19	40	9.20	
	sF/ Tanypodinae		809	5	1		6	1.38	
	F/ Psychodidae	autre sp	783		1		1	0.23	
	,	Enallagma coecum	664	1			1	0.23	
Nomb	ore total d'individus			225	58	152	435		
	ore de Taxons			19	13	15	27		
Minim				1	1	1		0.00	0.00
Maxir				69	33	33		17.70	97.70
WANT	T.M.I.I.			- 00				17.70	37.70
i	ndice de Shannon						3.62		
	ndice de Simpson						0.10		
l	ndice d'Equitabilité						0.50		

Bezaudin, Pont RD24 Ste Marie 08213101

	24 SAINTE-MARIE - BER							
02/03/2012			Echantillon			Total	Fréq.	F. Cum
			Phase A	Phase B	Phase C			
TAXONS	Genre ou espèce	SANDRE				N-T	%	%
VERS								2.25
Cl/ Turbellariés		3326						0.00
Cl/ Achètes		907						0.00
Cl/ Oligochètes		933	1	2	11	14	2.25	2.25
MOLLUSQUES		965						68.22
CI/ Gastéropodes		5123						68.22
F/ Neritidae	Neritina sp.	9825		1		1	0.16	
F/ Thiaridae			372	21	31	424	68.06	
Cl/ Bivalves		5125						0.00
ARTHROPODES								29.53
CI/ Crustacés		859						2.25
sCl/ Ostracodes					1	1	0.16	0.16
sCl/ Malacostracés								2.09
O/ Amphipodes								0.00
O/ Décapodes		20200		_				2.09
	Atya scabra	20308		2	1	3	0.48	
	Micratya poeyi	20479		1		1	0.16	
200	Macrobrachium sp.	3289	3		6	9	1.44	
Cl/ Insectes								27.29
O/ Trichoptères		181						0.32
	Smicridea sp.	20417			1	1	0.16	
F/ Xiphocentronidae	Xiphocentron fuscum	20522		1		1	0.16	
O/ Ephéméroptères		348				_		1.77
F/ Caenidae	Caenis femina	20.400	1	2		3	0.48	
F/ Leptohyphidae	Leptohyphes sp.	20488		5	2	7	1.12	
2000	Tricorythodes griseus	20524			1	1	0.16	
O/ Hétéroptères		3155		4			0.00	0.32
F/ Veliidae	Rhagovelia sp.	10254	1	1		2	0.32	0.04
O/ Coléoptères		20440		4			0.40	0.64
F/ Elmidae	Elsianus sp.	20448	1	1	1	3	0.48	
0/0: 4)	Hexanchorus sp.	20450			1	1	0.16	04.04
O/ Diptères		746					0.40	24.24
sF/ Ceratopogoninae		822	1			1	0.16	
sF/ Forcypomyinae	Atrigopogon sp.	20490			1	1	0.16	
a E/ Outle a ala disa a	Tanytarsini	012	22	4		22	3.53	
sF/ Orthocladinae		813	116	4	6	126	20.22	
sF/ Tanypodinae		809			1	1	0.16	
O/ Odonates								0.00
O/ Lépidoptères		849						0.00
Nombre total d'individus			518	41	64	623		
Nombre de Taxons			9	11	13	20		
Minimum			1	1	1		0.00	0.00
Maximum			372	21	31		68.06	68.22
indice de Shannon						1.59		
Indice de Simpson						0.51		
Indice d'Equitabilité						0.37		
muice a Equitabilite						0.37		<u> </u>

Rivière Capot, AEP Vivé Capot 08115101

	RIVIERE CAPOT - A	AEP VIVE - CAV							
	07/03/2012	-		Echantillons			Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
TA	XONS	Genre ou espèce	SANDRE				N	%	%
SP	ONGIAIRES	·	1090				0 -1	0.00	0.00
NE	MATHELMINTHES		3111	1			1	0.10	0.10
٧Đ									0.00
	Cl/ Turbellariés		3326						0.00
	Cl/ Achètes		907						0.00
МС	DLLUSQUES		965						6.21
	Cl/ Gastéropodes		5123	2					6.21
	F/ Hydrobiidae	Division in the second	973	1 7			1	0.10	
	F/ Physidae	Physa sp.	997	7	00	_	7	0.68	
	F/ Thiaridae		5125	27	20	9	56	5.43	0.00
A D	Cl/ Bivalves THROPODES		5125						0.00 93.70
AK	Cl/ Crustacés		859						2.72
	sCl/ Ostracodes		039	4			4	0.39	0.39
	sCl/ Malacostracés			-			-	0.55	2.33
	O/ Amphipodes								0.00
	O/ Décapodes								2.33
	5, Decapoues	Atya scabra	20308		2		2	0.19	2.00
		Atya innocous	20305	6	2		8	0.78	
		Micratya poeyi	20479	9	2	1	12	1.16	
		Macrobrachium sp.	3289	2	_	· '	2	0.19	
		M. acanthurus	0203	_				00	
	Cl/ Insectes								90.98
	O/ Trichoptères		181						21.34
		Smicridea sp.	20417	1	67	13	81	7.86	
		Neotrichia sp.	20422	21	4	-	25	2.42	
	F/ Philopotamidae	Chimarra sp.	207		2		2	0.19	
	F/ Xiphocentronida	e Xiphocentron fuscum	20522	6	54	52	112	10.86	
	O/ Ephéméroptères	·	348						18.14
	F/ Baetidae	Baetidae sp.	363		3		3	0.29	
	F/ Baetidae	Americabaetis sp.	20430	18			18	1.75	
		Fallceon ater	20487		8	1	9	0.87	
	F/ Caenidae	Caenis femina		1			1	0.10	
	F/ Leptohyphidae		20434	3		6	9	0.87	
	F/ Leptohyphidae	Leptohyphes sp.	20488	4	84	17	105	10.18	
		Tricorythodes griseus	20524	33	2	3	38	3.69	
	F/ Leptophlebiidae		20524	2			2	0.19	
	F/ Leptophlebiidae	Hagenulopsis guadeloupensis	20489	1			1	0.10	
		Terpides sp.		1			1	0.10	
	O/ Hétéroptères		3155						0.68
	F/ Veliidae	Rhagovelia sp.	10254	7			7	0.68	
	O/ Coléoptères								1.55
	F/ Elmidae	Elsianus sp.	20448	1	1	1	3	0.29	
		Hexanchorus sp.	20450	6	4	3	13	1.26	
	O/ Diptères		746					0.40	49.18
	Diptère ND		022	1			1	0.10	
	sF/ Ceratopogonii		822	2	2		4	0.39	
_	sF/ Forcypomyina	ae Atrigopogon sp.	20490 807		2	4	2	0.19	
	F/ Chironomidae sF/ Chironominae	Chironomini	807	10	F	3	1 18	0.10	
	sF/ Ontronominae		017		5 81			1.75 44.42	
	sF/ Orthocladinae	;	813 809	372 3		5	458 6	0.58	
	sF/ Harrisius		009	13	3	1	14	1.36	
	F/ Empididae	Hemerodromia sp.	832	13	1	l l	2	0.19	
	F/ Emplaidae F/ Psychodidae	autre sp	783	1	<u> </u>		1	0.19	
	O/ Odonates	auti o sp	703	† '			- '	0.10	0.00
	O/ Ddonates O/ Lépidoptères		849						0.00
	F/ Pyralidae		2947	1			1	0.10	0.10
			2011					3.10	
	mbre total d'individus			568	349	116	1031		
	mbre de Taxons			32	20	14	37		
	imum			1 070	1	1 50		0.00	0.00
Max	ximum			372	84	52		44.42	93.70
	indica do Characa						2 00		
	indice de Shannon						3.09		
	Indice de Simpson						0.23		
	Indice d'Equitabilité						0.59		
							0.00		

Grande Rivière, Stade de Grande Rivière 08102101

	GRANDE RIVIERE - AN	ONT STADE GRANDE RIVIERE - G	RS						
	02/03/2012			Echantillon:	3		Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
	XONS	Genre ou espèce	SANDRE				N-T	%	%
	VIERTIENS		1052	2			2	0.16	0.16
	DRACARIENS		906		2	2	4	0.31	0.31
۷E									2.26
	Cl/ Turbellariés		3326						0.00
	Cl/ Achètes		907						0.00
	CI/ Oligochètes		933	7	12	10	29	2.26	2.26
MC	DLLUSQUES		965						0.00
	Cl/ Gastéropodes		5123						0.00
	Cl/ Bivalves		5125						0.00
AR	THROPODES								97.27
	CI/ Crustacés		859						0.08
	sCl/ Malacostracés								0.08
	O/ Amphipodes								0.00
	O/ Décapodes								0.08
		Macrobrachium heterochirus	20310		1		1	0.08	
	CI/ Insectes								97.19
	O/ Trichoptères		181						1.56
		Smicridea sp.	20417	1	8	2	11	0.86	
		Zumatrichia sp.	20424		1		1	0.08	
	F/ Philopotamidae	Chimarra sp.	207		1	3	4	0.31	
	F/ Xiphocentronidae	Xiphocentron fuscum	20522		1	3	4	0.31	
	O/ Ephéméroptères		348						2.65
	F/ Baetidae	Americabaetis sp.	20430		1		1	0.08	
		Fallceon ater	20487		4	4	8	0.62	
	F/ Leptohyphidae	Leptohyphes sp.	20488		1	2	3	0.23	
		Tricorythodes griseus	20524		16	6	22	1.72	
	O/ Hétéroptères		3155						0.08
	F/ Veliidae	Rhagovelia sp.	10254		1		1	0.08	
	O/ Coléoptères								1.01
	F/ Elmidae	Elsianus sp.	20448	1	5	3	9	0.70	
		Hexanchorus sp.	20450		2		2	0.16	
	F/ Psephenidae	Psephenops sp.	20452		1	1	2	0.16	
	O/ Diptères		746						91.89
	sF/ Ceratopogoninae		822	1	2		3	0.23	
	sF/ Orthocladinae		813	864	267	25	1156	90.17	
	sF/ Tanypodinae		809		3	1	4	0.31	
	sF/ Harrisius		000		1		1	0.08	
	F/ Dolichopodidae		836		1		1	0.08	
	F/ Limoniidae		757	3	6	4	13	1.01	
	O/ Odonates								0.00
	O/ Lépidoptères		849						0.00
Nor	mbre total d'individus			879	337	66	1282		
	mbre de Taxons			7	21	13	22		
	imum			1	1	1		0.00	0.00
	ximum			864	267	25		90.17	97.27
								20.17	JE.
	indice de Shannon						0.82		
	Indice de Simpson						0.81		
	Indice d'Equitabilité						0.18		

Rivière Roxelane, Saint Pierre Ancien Pont 08329101

	RIVIERE ROXELANE - S	SAINT-PIERRE - ROS							
	15/03/2012			Echantillon	s		Total	Fréq.	F. Cum.
	10,00,2012			Phase A	Phase B	Phase C			
TA	XONS	Genre ou espèce	SANDRE				N ₊ T	%	%
	MERTIENS		1052	1	1		2	0.05	0.05
۷E	RS								66.83
	Cl/ Turbellariés		3326	4					0.00
	Cl/ Achètes		907						0.00
	Cl/ Oligochètes		933	2496	13	66	2575	66.83	66.83
MO	DLLUSQUES		965						5.24
	Cl/ Gastéropodes		5123						5.22
	F/ Physidae	Physa sp.	997	1	1		2	0.05	
	F/ Thiaridae			119	9	71	199	5.16	
	Cl/ Bivalves		5125						0.03
	F/ Sphaeriidae	Pisidium sp.	1043	1			1	0.03	
AR	THROPODES								27.87
	Cl/ Crustacés		859						1.32
	sCl/ Ostracodes			19			19	0.49	0.49
	sCl/ Malacostracés								0.86
	O/ Amphipodes								0.00
	O/ Décapodes			4					0.86
	F/ Atyidae	ND	860			1	1	0.03	
		Macrobrachium sp.	3289	23	2	1	26	0.67	
		M. faustinum	20304	6			6	0.16	
	CI/ Insectes								26.52
	O/ Trichoptères		181						0.44
	<u> </u>	Smicridea sp.	20417		1		1	0.03	
		Hydroptila sp.	200	4			4	0.10	
		Neotrichia sp.	20422	9			9	0.23	
		Zumatrichia sp.	20424			1	1	0.03	
	F/ Xiphocentronidae	Xiphocentron fuscum	20522		1	1	2	0.05	
	O/ Ephéméroptères	•	348						11.76
	F/ Baetidae	Americabaetis sp.	20430	380	2	1	383	9.94	
	F/ Caenidae	Caenis femina		4			4	0.10	
	F/ Caenidae	Caenis catherinae		4		2	6	0.16	
	F/ Leptohyphidae		20434		3	1	4	0.10	
	F/ Leptohyphidae	Leptohyphes sp.	20488		4	2	6	0.16	
	, r = op to to p p to to to	Tricorythodes griseus	20524	32	14	4	50	1.30	
	O/ Hétéroptères	The conjunction of the control of the control of the conjunction of th	3155	-					0.00
	O/ Coléoptères								0.13
		Hexanchorus sp.	20450	1	4		5	0.13	
	O/ Diptères		746	1				, ,,,, ,	14.20
	sF/ Ceratopogoninae		822	4	3	3	10	0.26	5
	sF/ Chironominae	Chironomini	322	128		5	133	3.45	
	21. 2 3	Tanytarsini		32			32	0.83	
	sF/ Orthocladinae		813	177	62	118	357	9.27	
	F/ Psychodidae	autre sp	783	4	7	4	15	0.39	
	O/ Odonates		, 55	1	,		.0	0.00	0.00
	O/ Lépidoptères		849						0.00
			043						0.00
Nor	mbre total d'individus			3453	127	281	3853		
	mbre de Taxons			22	15	15	26		
Min	imum			1	1	1		0.00	0.00
Max	ximum			2496	62	118		66.83	66.83
	indice de Shannon						1.84		
							0.47		
l	Indice de Simpson						0.47		
	Indice d'Equitabilité						0.39		

Rivière Oman, Dormante 08824101

	OMAN - DORMA	NTE - OMD							
	06/03/2012			Echantillon	S		Total	Fréq.	F. Cum.
				Phase A	Phase B	Phase C			
TAX	ONS	Genre ou espèce	SANDRE				N-T	%	%
	Cl/ Oligochètes		933	4	7	4	15	4.95	4.95
	F/ Ancylidae		1027	2			2	0.66	
	F/ Thiaridae			8	8	28	44	14.52	
		Micratya poeyi	20479		9	54	63	20.79	
		Jonga serrei	20480	7	4		11	3.63	
	F/ Xiphocaridae	Xiphocaris elongata	20520			1	1	0.33	
		Neotrichia sp.	20422			1	1	0.33	
	F/ Baetidae	Baetidae sp.	363	1	4	3	8	2.64	
		Fallceon ater	20487		1	1	2	0.66	
	F/ Caenidae	Caenis sp.	457	11	1		12	3.96	
	F/ Caenidae	Caenis femina		67	5	1	73	24.09	
	F/ Caenidae	Caenis catherinae			2	1	3	0.99	
	F/ Leptohyphida	e Leptohyphes sp.	20488		2	2	4	1.32	
	F/ Veliidae	Rhagovelia sp.	10254		3	2	5	1.65	
	Diptère ND				1		1	0.33	
	F/ Chironomidae		807	2			2	0.66	
		Tanytarsini		4	6	1	11	3.63	
	sF/ Tanypodina	ae	809	22	1	1	24	7.92	
	sF/ Harrisius			2			2	0.66	
	ND			2			2	0.66	
	F/ Coenagrionida	ae <i>ND</i>	658	13			13	4.29	
		Dythemis sterilis	20493	2			2	0.66	
	F/ Pyralidae		2947		1	1	2	0.66	
Nom	hbre total d'individus			167	66	118	303		
Nom	nbre de Taxons			17	17	16	23		
	mum			1	1	1		0.00	0.00
Max	imum			67	10	54		24.09	79.87
	indice de Shannon						3.40		
	Indice de Simpson						0.14		
	Indice d'Equitabilité						0.47		

Rivière Lézarde, Palourde 0850101

	LEZARDE - PALOURDE	- PAL							
	08/03/2012			Echantillons	S		Total	Fréq.	F. Cum
				Phase A	Phase B	Phase C			
TAX	ONS	Genre ou espèce	SANDRE				N,T	%	%
	RACARIENS		906		1		1	0.23	0.23
VER									1.64
	Cl/ Turbellariés		3326		2	1			0.23
	F/ Dugesiidae		1055	1			1	0.23	0.00
	Cl/ Achètes		907 933	6			6	1.41	0.00
MO	Cl/ Oligochètes L LUSQUES		965	0			0	1.41	17.80
IVIO	Cl/ Gastéropodes		5123	1	2	1			17.80
	F/ Ancylidae		1027	72	1		73	17.10	17.00
	F/ Thiaridae		1027	2		1	3	0.70	
	Cl/ Bivalves		5125					0.70	0.00
ART	HROPODES								80.33
	Cl/ Crustacés		859						12.41
	sCl/ Ostracodes				3		3	0.70	0.70
	sCl/ Malacostracés								11.71
	O/ Amphipodes								0.00
	O/ Décapodes			1					11.71
		Micratya poeyi	20479	40	9	1	50	11.71	
	Cl/ Insectes								67.92
	O/ Trichoptères		181	1	2	1			13.11
Ш	F/ Calamoceratidae	Phylloicus sp.	20413	2			2	0.47	
		Smicridea sp.	20417		24	6	30	7.03	
		Hydroptila sp.	200	_	1		1	0.23	
		Neotrichia sp.	20422	7	6		13	3.04	
	E/ Dillerate with a	Zumatrichia sp.	20424	1		_	1	0.23	
	F/ Philopotamidae	Chimarra sp.	207			1	1	0.23	
	F/ Xiphocentronidae	Polyplectropus sp. Xiphocentron fuscum	20428 20522		5	2	6	0.47 1.41	
	O/ Ephéméroptères	Xipriocentron luscum	348		3	ı	0	1.41	31.85
	F/ Baetidae	Baetidae sp.	363	8	1	2	11	2.58	31.03
	F/ Baetidae	Americabaetis sp.	20430	50	13	3	66	15.46	
	17 Dactidae	Cloedes caraibensis	20486	2	4	3	6	1.41	
		Fallceon ater	20487		8	4	12	2.81	
	F/ Caenidae	Caenis femina	20107	1			1	0.23	
	F/ Caenidae	Caenis catherinae		1			1	0.23	
	F/ Leptohyphidae	Leptohyphes sp.	20488		23	2	25	5.85	
		Tricorythodes griseus	20524	2	6	2	10	2.34	
	F/ Leptophlebiidae	Hagenulopsis guadeloupensis	20489	1	-	3	4	0.94	
	O/ Hétéroptères		3155						0.23
	F/ Veliidae	Rhagovelia sp.	10254		1		1	0.23	
	O/ Coléoptères								7.49
	F/ Elmidae	Elsianus sp.	20448		1	2	3	0.70	
		Hexanchorus sp.	20450	1	5	1	7	1.64	
	F/ Gyrinidae	Gyretes sp.	10255	1			1	0.23	
Ш	F/ Psephenidae	Psephenops sp.	20452	2	5	14	21	4.92	
	O/ Diptères		746			_	L .		11.01
	sF/ Ceratopogoninae	Act	822		2	2	4	0.94	
	sF/ Forcypomyinae	Atrigopogon sp.	20490	1			1	0.23	
	oE/ Orthools -!:	Tanytarsini	017	4	2	2	2	0.47	
	sF/ Orthocladinae sF/ Tanypodinae		813 809	1	17 7	2	20 10	4.68 2.34	
	sF/ Tanypodinae		009	6	1		7	1.64	
	F/ Empididae	Hemerodromia sp.	832	0	'	1	1	0.23	
	F/ Limoniidae	nomorografila sp.	757		1	1	2	0.23	
	O/ Odonates		, 37		'	'		0.47	3.98
	ND				1		1	0.23	3.50
	F/ Coenagrionidae	ND	658	12			12	2.81	
	F/ Libellulidae	ND	696	2		2	4	0.94	
	O/ Lépidoptères		849			_			0.23
	F/ Autre			1		1	1	0.23	1
NI:				000	457				
	bre total d'individus			226	157	59	427		
	bre de Taxons			27	29	25	41	0.00	0.00
IVIINI	mum			1	1	1		0.00	0.00
	IIIIuIII			72	24	14		17.10	80.33
Max							_		_
	indice de Shannon						4.18		
	indice de Shannon Indice de Simpson						4.18 0.08		

ASCONIT Consultants

Agence Caraïbes ZI Champigny 97224 DUCOS

Tél.: 05.96.63.55.78 / Fax: 05.96.63.55.78

Mobiles: 06.96.25.54.10

E-mail: charlotte.verges@asconit.com