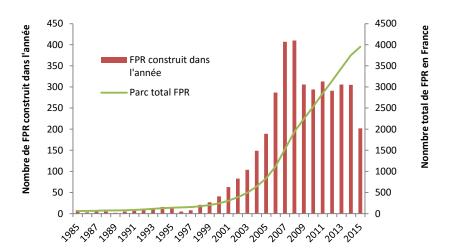


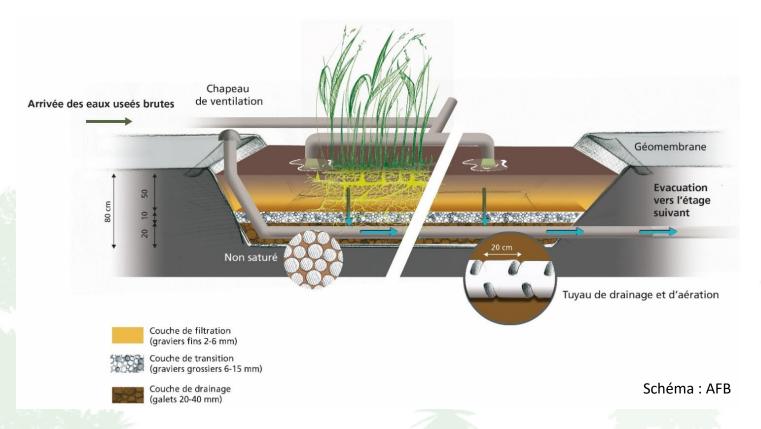
Conception et dimensionnement des FPV

Rémi Lombard-Latune



- Généralités sur le fonctionnement des FPV
- Performances des FPV
- Dimensionnement

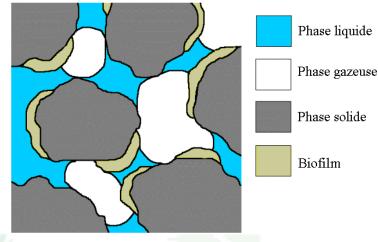
- Années 50 : Käthe Siedel (Botaniste à Max Planck Institute, Plön), premiers essais de traitement des eaux à partir des plantes des zones humides.
- 1978 : le Cemagref étudie la station de Saint-Bohaire (41)
- Années 80 : le Cemagref conçoit les premières stations expérimentales
- Années 90 : essors de la filière grâce a un partenariat public/privé (SINT)



Données: BD ERU 2015

- 2006 : Premiers FPR dans les DOM (Hachenoua, Mayotte)
- 2010 : Début des actions DOM Onema/Irstea

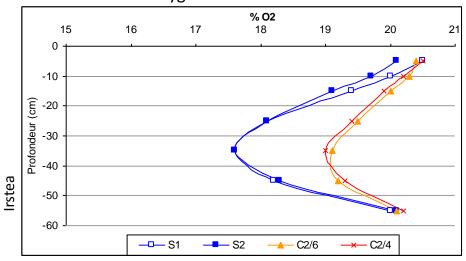
Généralités sur les filtres plantés de végétaux (FPV)



- Alimentation eaux usées brutes : co-traitement eaux + boues
- Culture fixée sur support fin
- Filtre planté à écoulement vertical, non saturé → milieu aérobie → odeurs

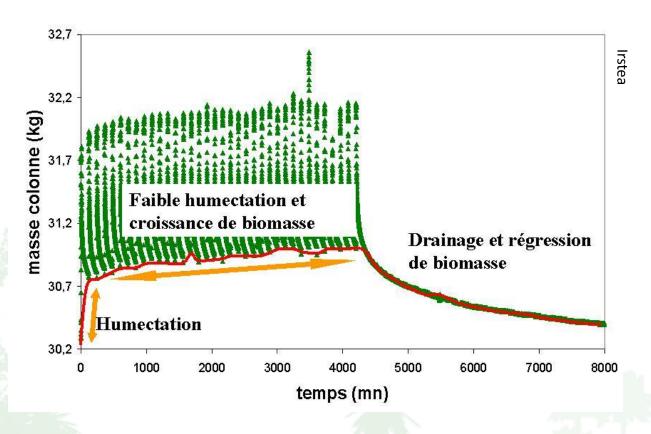
Généralités: processus mis en jeu

- Culture fixée sur support fin :
 milieu polyphasique (phase
 liquide, gazeuse, et solide,
 support de développement du
 biofilm)
- Processus de dégradation :
 - Biologique (biomasse)
 - Physique (filtration)
 - Chimique (adsorption)


Généralités : maintien des conditions aérobies

- Alimentation séquencée par bâchée (<u>def</u> : volume correspondant à une lame d'eau de 2,5 à 5 cm, avec débit supérieur vitesse d'infiltration → répartition et flaquage)
 - → phénomènes convectifs
- Réseau d'aération/drainage
 - → diffusion depuis le fond du filtre
- Action mécanique des tiges des végétaux sur le dépôt de surface, ménage des anneaux libre à travers lesquels les échanges gazeux peuvent se faire.
 - → diffusion depuis la surface des filtres

Rôle mécanique des végétaux



Profil d'oxygénation d'un FPV vertical

Généralités : gestion de la biomasse

Alternance : phase d'alimentation et phase de repos (!), 3,5J/3,5j

→ minéralisation de la biomasse accumulée

Généralités : pérennité du système

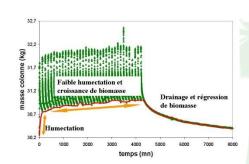
Les FPV sont des systèmes en équilibre qui tendent naturellement vers un colmatage...

→ Enjeu : gestion de la biomasse et des boues

Gestion à plusieurs échelle temporelle :

Heures

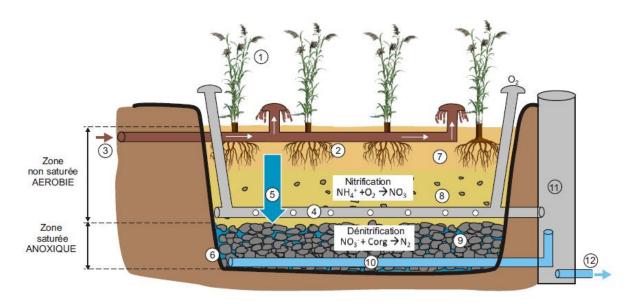
Rôle mécanique des végétaux


Jours

→ Période de repos

Années

Curage des boues (en surface)



Généralités : variantes de FPV

- Hauteur de massif filtrant : 30 à 80 cm, > 50 cm réseau aération intermédiaire
 - → Amélioration des performances sur C, MES, nitrification
- Recirculation : une partie des eaux traitées est renvoyée en tête de station
 - → Dilution EU brutes, légère amélioration perf. C, MES, besoins plantes
- FPV NS/S : ajout d'un fond saturé : zone anaérobie → dénitrification
 - → Amélioration MES, N total, (C), besoins plantes

- 1) Roseaux
- 2) Rizosphère
- (3) Entrée des eaux brutes à traiter
- (4) Drains d'aération
- (5) Filtration, épuration
- (6) Géomembrane
- (7) Couche de filtration
- (8) Couche de transition
- (9) Couche de drainage
- (10) Drains de collecte des eaux épurées
- (11) Regard de mise en charge avec bouchon de vidange
- (12) Sortie des eaux épurées

Schéma: Irstea

Second étage FPV NS :

Granulométrie plus fine, réseau d'alimentation différent

- → Amélioration des performances sur C, MES, nitrification
- Second étage LB :

1,5 m de pouzzolane, 2 réseaux d'alimentation en alternance

→ Nitrification complète, amélioration des performances sur C

Généralités : le rôle des végétaux

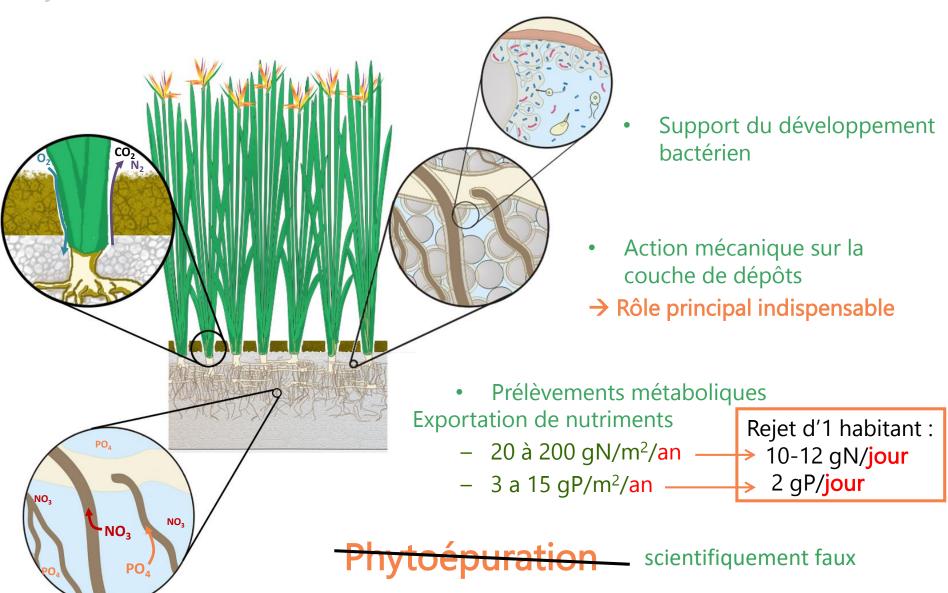
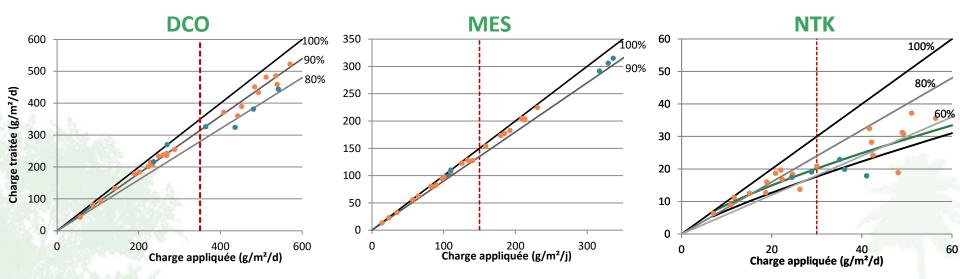
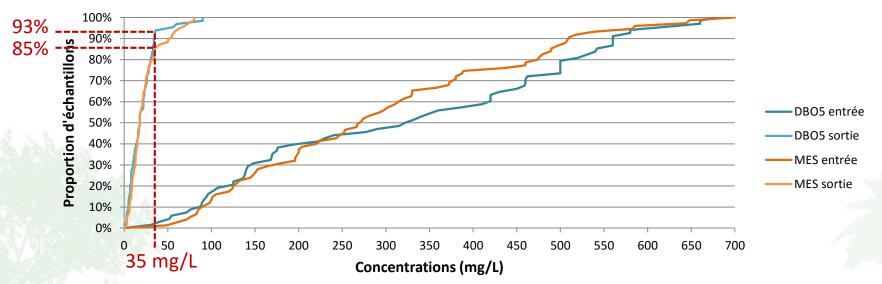



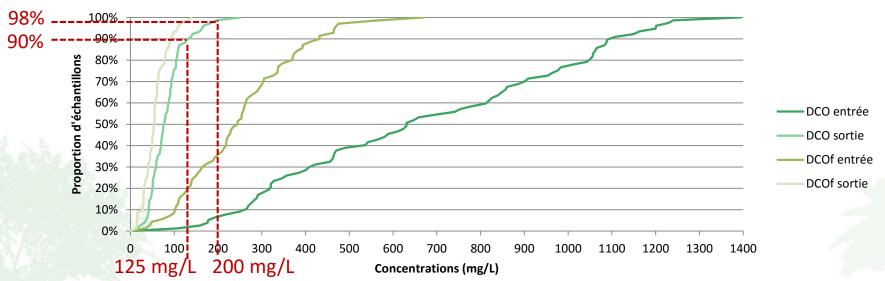
Schéma: V. Gagnon, R. Lombard Latune


- Temps sec
- Temps de pluie
- Cinétique nitrif. tropical
- Cinétique nitrif. tempéré

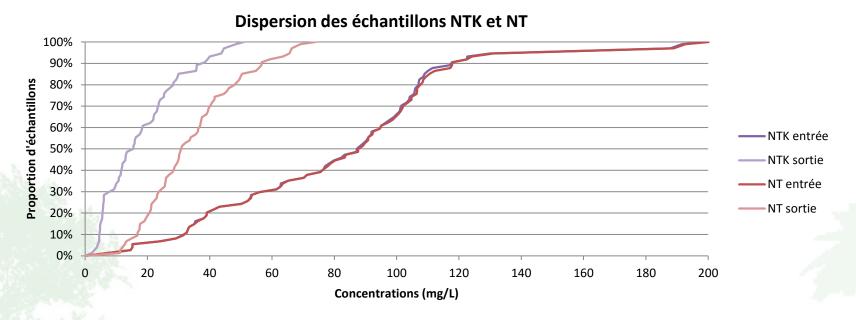
- Données station de Taupinière (sortie 1^{er} étage, NS/S), taux de charge plus important
- DCO: performances autour de 90%, impact temps de pluie
- MES : abattement important et stable, même en surcharge (zone sat)
- NTK: rendement baisse avec hausse charge,
- NTK : cinétique de nitrification haute que sur 1 étage en métropole (Molle *et al.,* 2008)

Dispersion des échantillons DBO5 et MES, entrée et sortie

- Graphs percentils concentrations entrée sortie, sur 97 bilans 24h, 7 FPV, 4 DOM
- → Traitement stable (faible étalement des valeurs de sortie)
- → Limites des concentrations en sortie


→ DBO₅: 35 mg/L: 93%

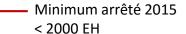
→ MES : 35 mg/L : 85%

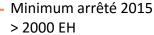


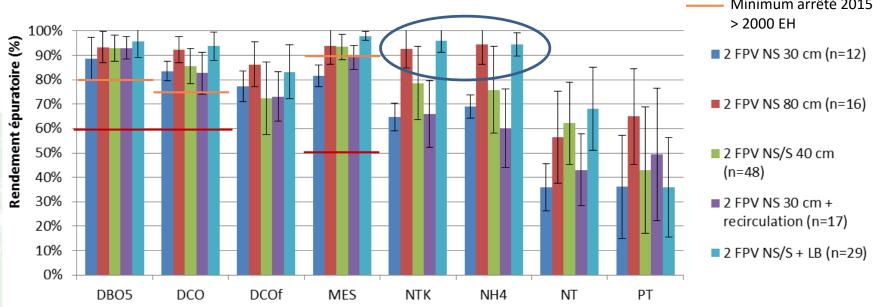
- Graphs percentils concentrations entrée sortie, sur 97 bilans 24h, 7 FPV, 4 DOM
- → Traitement stable (faible étalement des valeurs de sortie)
- → Limites des concentrations en sortie

DBO₅: 35 mg/L: 93%
 MES: 35 mg/L: 85%

• DCO: 200 mg/L: 98%, 125 mg/L 90%


- Graphs percentils concentrations entrée sortie, sur 97 bilans 24h, 7 FPV, 4 DOM
- → Traitement stable (faible étalement des valeurs de sortie)
- → Limites des concentrations en sortie


DBO₅: 35 mg/L: 93%
 MES: 35 mg/L: 85%


• DCO: 200 mg/L: 98%, 125 mg/L 90%

Comparaison des différentes filières

- Minimum de l'arrêté 2015 < 2000 EH : aucun problème
- Minimum de l'arrêté 2015 > 2000 EH : configuration minimale insuffisante pour les MES
- Nitrification poussée : augmentation de la couche de filtration, ou 2nd étage
- Azote total: NS/S permet d'atteindre 60-70%, voire plus si recirculation.

Données générales sur les eaux usées brutes dans les DOM Mutualisation des retours d'exp. DOM : auto-surveillances, études OE, contrôle SPE ...

• Gammes de variation des concentrations des eaux brutes dans les DOM

		DBO_5 (mg O_2/L)	DCO (mgO ₂ /L)	MES (mg/L)	NTK (mgN/L)	NH_4 (mgN/L)	PT (mgP/L)
Moyenne		340	653	300	65	49	8.8
Gamme de	Limite haute	800	1512	825	129	97	19
variation	Limite basse	50	125	55	16	11.4	2.4
Nombre de	valeurs	1425	1464	1439	713	661	798

Production d'1 EH dans les DOM

	$DBO_5 (gO_2/j)$	DCO (gO ₂ /j)	MES (g/j)	NTK (gN/j)	N-NH ₄ (gN/j)	PT (gP/j)
EH tropical	60	133	64	17.7	13	2.8

[→] Pour le dimensionnement des ouvrages, retenir 60/130/65/17/2,5 g/j pour DBO5/DCO/MES/NTK/PT respéctivement.

• Dimensionnement basé sur une charge applicable quotidiennement sur le filtre en fonctionnement en DCO (350 g/m²/j)

Paramètres	DBO ₅	DCO	MES	NTK	Hydraulique (m/j)
Charge appliqué (g/m²/j)	150	350	150	30	< 0,75

- Vérification des charges appliquées pour chacun des paramètres
- En pratique, <u>en l'absence de données terrain</u>, cela revient à une surface de 0,4 m²/EH par filtre
- FPV : 2 filtres en parallèle

Exemple de dimensionnement

Exemple 1 : création d'un lotissement

- 40 habitations, 180 habitants théoriques
- 1 hab = $45g DBO_5/j$
- $180 \times 45 = 8 \cdot 100 \text{ gDBO}_5/j$
- 1 EH = $60 \text{ gDBO}_5/\text{j}$
- 8 100 / 60 = 135 EH
- $135 \times 0.8 \text{ m}^2/\text{EH} = 108 \text{ m}^2$
- → 2 filtres de 54 m²

<u>Exemple 2</u>: réhabilitation d'un BA surchargée

 Les moyennes des bilans d'autosurveillances de l'année précédente donnent :

```
Q moyen = 220,8 m3/j, [DCO] = 344,6 \text{ mg/L}, [DBO_5] = 163 \text{ mg/L}
```

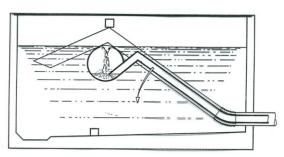
- 344,6 x 220,8 = 76 088 gDCO/j
- $76.088 / 350 = 217.5 \text{ m}^2$
- $163 \times 220,8 = 35 990 \text{ gDBO}_5/\text{j}$
- 35 990 / 217,5 = 165,5 ! > 150 gDBO₅/m²/j
- $35 990 / 150 = 240 \text{ m}^2$
- 220.8 / 240 = 0.92 m/j! > 0.75 m/j
- $220.8 / 0.75 = 294.5 \text{ m}^2$
- → 2 filtres de 295 m²

Dimensionnement : choix du type de filière

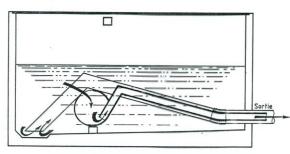
	Autonomie électrique (hors		Activité	Emprise au sol des	Performances de traitement garanties : abattement % (concentrations limites mg/L)				Traitement germes
	contraintes topographiques)	Réseau unitaire	intermittente	ouvrages de traitement	DCO	MES	NTK	NT	pathogènes (module UV)
2 FPV NS couche filtrante 30 cm	\checkmark	\checkmark	×	0,8 m²/EH	75 % (125 mg/L)	80 % (50 mg/L)	60 % (40 mg/L)	20 % (60 mg/L)	×

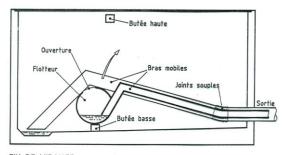
Pré-traitement : alimentation FPV eau usées brutes

- → Pré-traitement = dégrilleur seulement
- Vitesses de passage à travers le dégrilleur doivent être comprises entre 0,3 et 1,2 m/s
- un entrefer de 20 à 40 mm (dans le cas d'un entrefer de 20 mm, le dégrilleur doit être automatique);
- un canal de dérivation doit être prévu en cas de colmatage du dégrilleur ;
- un outil de raclage adapté à l'entrefer est fourni ;
- la présence d'un bac d'égouttage et de stockage des refus de dégrillage.
- Manuel ou automatique



Dimensionnement : alimentation des FPV


- Alimentation séquencée : bâchées → flaquage, renouvellement de l'air du massif
- Dimensionnement :
 - bâchée de 2,5 à 5 cm
 - débit d'alimentation > vitesse d'autocurage
 - →0,5 m3/h/m² de filtre en alimentation
- Ouvrage de bâchée : PR ou siphon
- Réseau enterré (PR) ou aérien (siphon)
- Diamètre DN 100 minimum
- Inox / PEHD surface



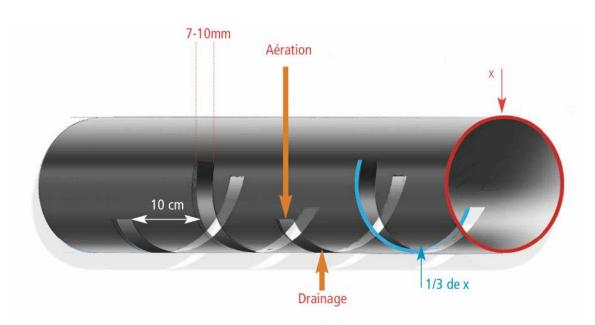
FIN DE REMPLISSAGE

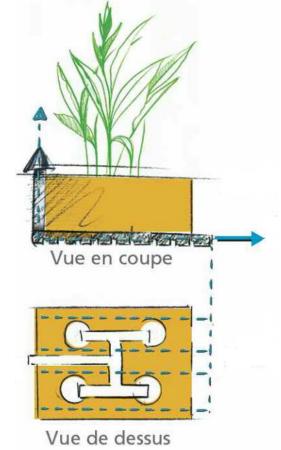
VIDANGE

FIN DE VIDANGE

Dimensionnement: massif filtrant

- 3 couches, de haut en bas :
- Couche filtrante: 30 à 80 cm de graviers de 2/6 mm, coefficient d'uniformité
 (CU) < 5
- Couche de transition : 10 à 20 cm d'épaisseur, assure transition granulométrique.
 - → Loi de Terzaghi (adaptée) : d_{15} couche de transition ≤ 5 x d_{85} couche filtrante Généralement gravier 5/20 mm.
- Couche drainante: parcourue par le réseau d'aération-drainage,
 Epaisseur 10 20 cm de graviers 20/60 mm. Pour NS/S, épaisseur 10 20 cm de plus que hauteur de saturation.
- Qualité des matériaux est fondamentale


Dimensionnement réseau aération drainage


Réseau en fond de filtre, mais remonte sur les côtés et se termine par

des évents à l'extérieur

Diamètre DN 100 minimum

0,25 m linéaire de drain / m² de filtre

Dimensionnement : phasage des projets

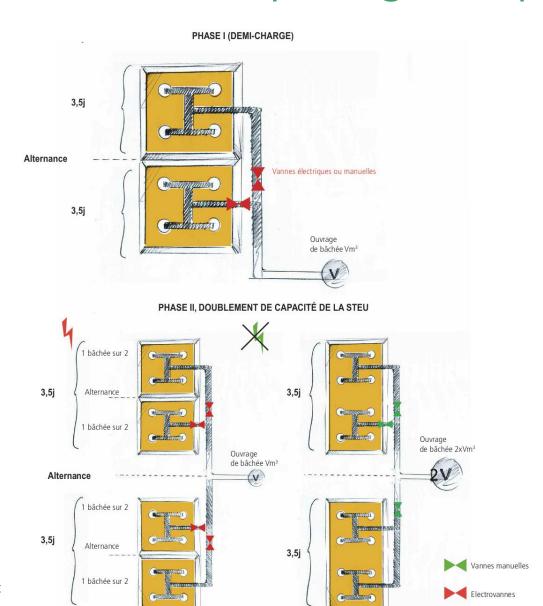
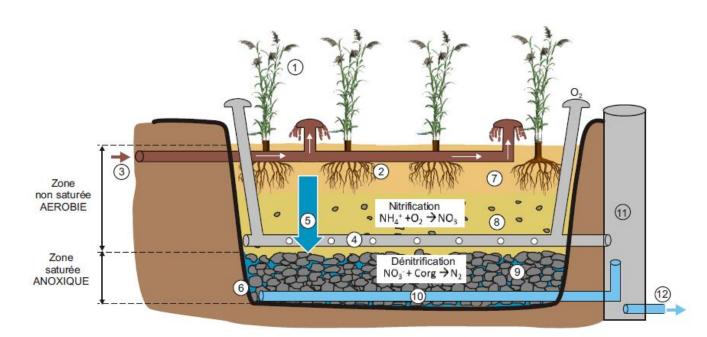


Schéma: AFB

17 et 19 octobre 2017 Martinique - Guadeloupe

Dimensionnement acceptation du temps de pluie


- 15 bilans 24h réalisés par temps de pluie : débit moyen x 2,8.
- Problème pour les filières conventionnelles (BA, DB)
- FPV : lame d'eau quotidienne 0,75 m, au-delà baisse nitrification (à confirmer dans les DOM)
- Différence temps de pluie ECP (problème permanent)
- Tempête Matthew 28/09/16 : charge appliquée sur le filtre > 2,5 m
- Hauteur de revanche (dimensionnement dynamique ?)

Dimensionnement NS/S

- Quelle hauteur de saturation ?
- → 40 cm. Besoin d'un V important pour :
 - ralentir les vitesses d'écoulement et piéger les MES,
 - temps de séjour suffisant pour la dénitrification.
- Matériaux : 20/60 mm
- Drain aération intermédiaire placé dans la couche de transition au dessus

Dimensionnement : quelles plantes ?

Phragmites australis est considéré comme invasif dans la plupart des DOM

→ Plantes de substitution

• Etude spécifique mise en place 100 espèces étudiées en 3 phases :

1/ Bibliographique

→ 22 espèces2/ Echelle pilote

→ 8 espèces

3/ Taille réelle

→ 3 espèces

Dimensionnement : quelles plantes ?

Heliconia psittacorum	Canna indica, canna glauca	Cyperus alternifolius/involucratus			
Famille des Héliconiacées, ordre des Zingibérales	Famille des Cannacées, ordre des Zingibérales	Famille des Cypéracées, ordre des Poales			
Développement très homogène, colonisation progressive	Légère tendance à avoir un développement en touffes	Croissance rapide, mais très lente colonisation			
de l'ensemble du filtre	Colonisation lente de l'ensemble du filtre	de l'ensemble du filtre Développement en touffes			
Densité moyenne : jusqu'à 250 tiges/m²	Densité moyenne : jusqu'à 250 tiges/m²	Très forte densité : jusqu'à 600 tiges/m²			
Très forte compétitivité vis-à-vis des adventices	Très forte compétitivité vis-à-vis des adventices	Forte compétitivité vis-à-vis des adventices			
Nécessite un accompagnement à l'installation : arrachage des adventices pendant 3 mois, 1 à 2 fois par mois Faucardage annuel, avant la saison des cyclones	Nécessite un accompagnement à l'installation : arrachage des adventices pendant 3 mois, 1 à 2 fois par mois Faucardage annuel, avant la saison des cyclones	Ne nécessite pas d'accompagnement à la plantation Faucardage tous les 6 mois pour éliminer les tiges mortes et favoriser la colonisation de l'ensemble du filtre			
Remarques 1 200 cultivars existent, entraînant une forte hétérogénéité (à l'intérieur même des filtres !). Privilégier les cultivars les plus petits Sa proximité génétique avec le bananier entraîne des risques phytosanitaires si le FPV est à une distance de moins de 1 km d'une bananeraie	Remarque Sur Canna indica en Guadeloupe et Martinique, des attaques de chenilles sont observées de décembre à mars. Elles ne détruisent pas entièrement les plantes mais les affaiblissent				

Séminaire de restitution du projet

Bibliographie: www.epnac/dom

Séminaire de restitution du projet **Attentive**